30 resultados para Neutron, elektrische Ladung, UCN
em Aston University Research Archive
Resumo:
Measurements of neutron and gamma dose rates in mixed radiation fields, and gamma dose rates from calibrated gamma sources, were performed using a liquid scintillation counter NE213 with a pulse shape discrimination technique based on the charge comparison method. A computer program was used to analyse the experimental data. The radiation field was obtained from a 241Am-9Be source. There was general agreement between measured and calculated neutron and gamma dose rates in the mixed radiation field, but some disagreement in the measurements of gamma dose rates for gamma sources, due to the dark current of the photomultiplier and the effect of the perturbation of the radiation field by the detector. An optical fibre bundle was used to couple an NE213 scintillator to a photomultiplier, in an attempt to minimise these effects. This produced an improvement in the results for gamma sources. However, the optically coupled detector system could not be used for neutron and gamma dose rate measurements in mixed radiation fields. The pulse shape discrimination system became ineffective as a consequence of the slower time response of the detector system.
Resumo:
The gamma-rays produced by the inelastic scattering of 14 MeV neutrons. in fusion reactor materials have been studied using a gamma-ray spectrometer employing a sodium iodide scintillation detector. The source neutrons are produced by the T(d,n)4He reaction using the SAMES accelerator at the University of Aston in Birmingham. In order to eliminate the large gamma-ray background and neutron signal due to the sensitivity of the sodium iodide detector to neutrons, the gamma-ray detector is heavily shielded and is used together with a particle time of flight discrimination system based on the associated particle time of flight method. The instant of production of a source neutron is determined by detecting the associated alpha-particle enabling discrimination between the neutrons and gamma-rays by their different time of flight times. The electronic system used for measuring the time of flight of the neutrons and gamrna-rays over the fixed flight path is described. The materials studied in this work were Lithium and Lead because of their importance as fuel breeding and shielding materials in conceptual fusion reactor designs. Several sample thicknesses were studied to determine the multiple scattering effects. The observed gamma-ray spectra from each sample at several scattering angles in the angular range Oº - 90° enabled absolute differential gamma-ray production cross-sections and angular distributions of the resolved gamma-rays from Lithium to be measured and compared with published data. For the Lead sample, the absolute differential gamma-ray production cross-sections for discrete 1 MeV ranges and the angular distributions were measured. The measured angular distributions of the present work and those on Iron from previous work are compared to the predictions of the Monte Carlo programme M.O.R.S.E. Good agreement was obtained between the experimental results and the theoretical predictions. In addition an empirical relation has been constructed which describes the multiple scattering effects by a single parameter and is capable of predicting the gamma-ray production cross-sections for the materials to an accuracy of ± 25%.
Resumo:
This thesis reports on the development of a technique to evaluate hydraulic conductivities in a soil (Snowcal) subject to freezing conditions. The technique draws on three distinctly different disciplines, Nuclear Physics, Soil Physics and Remote Sensing to provide a non-destructive and reliable evaluation of hydraulic conductivity throughout a freezing test. Thermal neutron radiography is used to provide information on local water/ice contents at anytime throughout the test. The experimental test rig is designed so that the soil matrix can be radiated by a neutron beam, from a nuclear reactor, to obtain radiographs. The radiographs can then be interpreted, following a process of remote sensing image enhancement, to yield information on relative water/ice contents. Interpretation of the radiographs is accommodated using image analysis equipment capable of distinguishing between 256 shades of grey. Remote sensing image enhancing techniques are then employed to develop false colour images which show the movement of water and development of ice lenses in the soil. Instrumentation is incorporated in the soil in the form of psychrometer/thermocouples, to record water potential, electrical resistance probes to enable ice and water to be differentiated on the radiographs and thermocouples to record the temperature gradient. Water content determinations are made from the enhanced images and plotted against potential measurements to provide the moisture characteristic for the soil. With relevant mathematical theory pore water distributions are obtained and combined with water content data to give hydraulic conductivities. The values for hydraulic conductivity in the saturated soil and at the frozen fringe are compared with established values for silts and silty-sands. The values are in general agreement and, with refinement, this non-destructive technique could afford useful information on a whole range of soils. The technique is of value over other methods because ice lenses are actually seen forming in the soil, supporting the accepted theories of frost action. There are economic and experimental restraints to the work which are associated with the use of a nuclear facility, however, the technique is versatile and has been applied to the study of moisture transfer in porous building materials and could be further developed into other research areas.
Resumo:
The atomic-scale structure of Bioglass and the effect of substituting lithium for sodium within these glasses have been investigated using neutron diffraction and solid state magic angle spinning (MAS) NMR. Applying an effective isomorphic substitution difference function to the neutron diffraction data has enabled the Na-O and Li-O nearest-neighbour correlations to be isolated from the overlapping Ca-O, O-(P)-O and O-(Si)-O correlations. These results reveal that Na and Li behave in a similar manner within the glassy matrix and do not disrupt the short range order of the network former. Residual differences are attributed solely to the variation in ionic radius between the two species. Successful simplification of the 2
Resumo:
Strontium has been substituted for calcium in the glass series (SiO2)49.46(Na2O)26.38(P2O5)1.07(CaO)23.08x(SrO)x (where x = 0, 11.54, 23.08) to elucidate their underlying atomic-scale structural characteristics as a basis for understanding features related to the bioactivity. These bioactive glasses have been investigated using isomorphic neutron and X-ray diffraction, Sr K-edge EXAFS and solid state 17O, 23Na, 29Si, 31P and 43Ca magic-angle-spinning (MAS) NMR. An effective isomorphic substitution first-order difference function has been applied to the neutron diffraction data, confirming that Ca and Sr behave in a similar manner within the glass network, with residual differences attributed to solely the variation in ionic radius between the two species. The diffraction data provides the first direct experimental evidence of split Ca–O nearest-neighbour correlations in these melt quench bioactive glasses, together with an analogous splitting of the Sr–O correlations; the correlations are attributed to the metal ions correlated either to bridging or to non-bridging oxygen atoms. Triple quantum (3Q) 43Ca MAS NMR corroborates the split Ca–O correlations. Successful simplification of the 2 < r (A) < 3 region via the difference method has also revealed two distinct Na environments. These environments are attributed to sodium correlated either to bridging or to nonbridging oxygen atoms. Complementary multinuclear MAS NMR, Sr K-edge EXAFS and X-ray diffraction data supports the structural model presented. The structural sites present will be intimately related to their release properties in physiological fluids such as plasma and saliva, and hence the bioactivity of the material. Detailed structural knowledge is therefore a prerequisite for optimising material design.
Resumo:
Melt quenched silicate glasses containing calcium, phosphorus and alkali metals have the ability to promote bone regeneration and to fuse to living bone. Of these glasses 45S5 Bioglass® is the most widely used being sold in over 35 countries as a bone graft product for medical and dental applications; particulate 45S5 is also incorporated into toothpastes to help remineralize the surface of teeth. Recently it has been suggested that adding titanium dioxide can increase the bioactivity of these materials. This work investigates the structural consequences of incorporating 4 mol% TiO2 into Bioglass® using isotopic substitution (of the Ti) applied to neutron diffraction and X-ray Absorption Near Edge Structure (XANES). We present the first isotopic substitution data applied to melt quench derived Bioglass or its derivatives. Results show that titanium is on average surrounded by 5.2(1) nearest neighbor oxygen atoms. This implies an upper limit of 40% four-fold coordinated titanium and shows that the network connectivity is reduced from 2.11 to 1.97 for small quantities of titanium. Titanium XANES micro-fluorescence confirms the titanium environment is homogenous on the micron length scale within these glasses. Solid state magic angle spinning (MAS) NMR confirms the network connectivity model proposed. Furthermore, the results show the intermediate range order containing Na-O, Ca-O, O-P-O and O-Si-O correlations are unaffected by the addition of small quantities of TiO2 into these systems.