8 resultados para Neuropeptide S

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Weight loss normally stimulates hunger, through mechanisms that include falls in circulating leptin and insulin, leading to stimulation of hypothalamic neuropeptide Y (NPY). Here, we investigated the leptin, insulin and NPY to clarify why hunger is suppressed in mice with severe cachexia due to the MAC16 adenocarcinoma. MAC16-bearing mice progressively lost weight (19% below controls) and fat (-61%) over 16 days after tumour transplantation, while total food intake fell by 10%. Pair-fed mice showed less wasting, with final weight being 9% and fat mass 25% below controls. Plasma leptin fell by 85% in MAC16 and 51% in pair-fed mice, in proportion to loss of fat. Plasma insulin was also reduced by 49% in MAC16 and 53% in pair-fed groups. Hypothalamic leptin receptor (OB-Rb) mRNA was significantly increased in both MAC16 (+223%) and pair-fed (+192%) mice. Hypothalamic NPY mRNA was also significantly raised in MAC16 (+152%) and pair-fed (+99%) groups, showing negative correlations with plasma leptin and insulin, and a positive association with OB-Rb mRNA. In MAC16-induced cachexia, leptin production and hypothalamic OB-Rb and NPY expression are regulated appropriately in response to fat depletion. Therefore, suppression of hunger is probably due to tumour products that inhibit NPY transport or release, or that interfere with neuronal targets downstream of NPY.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Orexins A and B (ORA and ORB) are neuropeptide hormones found throughout the central nervous system and periphery. They are required for a host of physiological processes including mitogen-activated protein kinase (MAPK) regulation, steroidogenesis, appetite control and energy regulation. While some signalling mechanisms have been proposed for individual recombinant orexin receptors in generic mammalian cell types, it is clear that the peripheral effects of orexin are spatially and temporally complex. This study dissects the different G-protein signalling and MAPK pathways activated in a pluripotent human adrenal H295R cell line capable of all the physiological steps involved in steroidogenesis. Both extracellular receptor kinase 1/2 (ERK1/2) and p38 were phosphorylated rapidly with a subsequent decline, in a time- and dose-dependent manner, in response to both ORA and ORB. Conversely, there was little or no direct activation of the ERK5 or JNK pathway. Analysis using signalling and MAPK inhibitors as well as receptor-specific antagonists determined the precise mediators of the orexin response in these cells. Both ERK1/2 and p38 activation were predominantly Gq- and to a lesser extent Gs-mediated; p38 activation even had a small Gi-component. Effects were broadly comparable for both orexin sub-types ORA and ORB and although most of the effects were transmitted through the orexin receptor-1 subtype, we did observe a role for orexin receptor-2-mediated activation of both ERK1/2 and p38. Cortisol secretion also differed in response to ORA and ORB. These data suggest multiple roles for orexin-mediated MAPK activation in an adrenal cell-line, this complexity may help to explain the diverse biological actions of orexins with wide-ranging consequences for our understanding of the mechanisms initiated by these steroidogenic molecules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The receptor activity-modifying protein (RAMP) family of membrane proteins regulates G protein-coupled receptor (GPCR) function in several ways. RAMPs can alter their pharmacology and signalling as well as the trafficking of these receptors to and from the cell surface. Accordingly, RAMPs may be exploited as drug targets, offering new opportunities for regulating the function of therapeutically relevant RAMP-interacting GPCRs. For example, several small molecule antagonists of RAMP1/ calcitonin receptor-like receptor complexes, which block the actions of the neuropeptide calcitonin gene-related peptide are in development for the treatment of migraine headache.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calcitonin gene-related peptide (CGRP) is a member of the calcitonin (CT) family of peptides. It is a widely distributed neuropeptide implicated in conditions such as neurogenic inflammation. With other members of the CT family, it shares an N-terminal disulphide-bonded ring which is essential for biological activity, an area of potential α-helix, and a C-terminal amide. CGRP binds to the calcitonin receptor-like receptor (CLR) in complex with receptor activity-modifying protein 1 (RAMP1), a member of the family B (or secretin-like) GPCRs. It can also activate other CLR or calcitonin-receptor/RAMP complexes. This 37 amino acid peptide comprises the N-terminal ring that is required for receptor activation (residues 1-7); an α-helix (residues 8-18), a region incorporating a β-bend (residues 19-26) and the C-terminal portion (residues 27-37), that is characterized by bends between residues 28-30 and 33-34. A few residues have been identified that seem to make major contributions to receptor binding and activation, with a larger number contributing either to minor interactions (which collectively may be significant), or to maintaining the conformation of the bound peptide. It is not clear if CGRP follows the pattern of other family B GPCRs in binding largely as an α-helix. Linked Articles This article is part of a themed section on Neuropeptides. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.170.issue-7 © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The calcitonin gene-related peptide (CGRP) receptor is an unusual G protein-coupled receptor (GPCR) in that it comprises the calcitonin receptor-like receptor (CLR), receptor activity modifying protein 1 (RAMP1) and the receptor component protein (RCP). The RAMP1 has two other homologues – RAMP2 and RAMP3. The endogenous ligand for this receptor is CGRP, a 37 amino acid neuropeptide that act as a vasodilator. This peptide has been implicated in the aetiology of health conditions such as inflammation, Reynaud’s disease and migraine. A clear understanding of the mode of activation of this receptor could be key in developing therapeutic agents for associated health conditions. Although the crystal structure of the N-terminal extracellular domain (ECD) of this receptor (in complex with an antagonist) has been published, the details of receptor-agonist interactions at this domain, and so ultimately the mechanism of receptor activation, are still unclear. Also, the C-terminus of the CLR (in the CGRP receptor), especially around the presumed helix 8 (H8) region, has not been well studied for its role in receptor signalling. This research project investigated these questions. In this study, certain residues making up the putative N-terminal ligand-binding core of the CLR (in the CGRP receptor) were mapped out and found to be crucial for receptor signalling. They included W69 and D70 of the WDG motif in family B GPCRs, as well as Y91, F92, D94 and F95 in loop 2 of CLR N-terminus. Also, F163 at the cytoplasmic end of TM1 and certain residues spanning H8 and associated C-terminal region of CLR were found to be required for CGRP receptor signalling. These residues were investigated by site-directed mutagenesis where they were mutated to alanine (or other residues in specific cases) and the effect of the mutations on receptor pharmacology assessed by evaluating cAMP production, cell surface expression, total cell expression and aCGRP-mediated receptor internalization. Moreover, the N-terminal ECDs of the CLR and RAMPs (RAMP1, RAMP2 and RAMP3) were produced in a yeast host strain (Pichia pastoris) for the purpose of structural interaction study by surface plasmon resonance (SPR). Following expression and purification, these receptor proteins were found to individually retain their secondary structures when analysed by circular dichroism (CD). Results were analysed and interpreted with the knowledge of the secretin family receptor paradigm. The research described in this thesis has produced novel data that contributes to a clearer understanding of CGRP receptor pharmacology. The study on CLR and RAMPs ECDs could be a useful tool in determining novel interacting GPCR partners of RAMPs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human and animal studies suggest that obesity in adulthood may have its origins partly during prenatal development. One of the underlying causes of obesity is the perturbation of hypothalamic mechanisms controlling appetite. We determined mRNA levels of genes that regulate appetite, namely neuropeptide Y (NPY), pro-opiomelanocortin (POMC) and the leptin receptor isoform Ob-Rb, in the hypothalamus of adult mouse offspring from pregnant dams fed a protein-restricted diet, and examined whether mismatched post-weaning high-fat diet altered further expression of these gene transcripts. Pregnant MF1 mice were fed either normal protein (C, 18% casein) or protein-restricted (PR, 9% casein) diet throughout pregnancy. Weaned offspring were fed to adulthood a high-fat (HF; 45% kcal fat) or standard chow (21% kcal fat) diet to generate the C/HF, C/C, PR/HF and PR/C groups. Food intake and body weight were monitored during this period. Hypothalamic tissues were collected at 16 weeks of age for analysis of gene expression by real time RT-PCR. All HF-fed offspring were observed to be heavier vs. C groups regardless of the maternal diet during pregnancy. In the PR/HF males, but not in females, daily energy intake was reduced by 20% vs. the PR/C group (p <0.001). In PR/HF males, hypothalamic mRNA levels were lower vs. the PR/C group for NPY (p <0.001) and Ob-Rb (p <0.05). POMC levels were similar in all groups. In females, mRNA levels for these transcripts were similar in all groups. Our results suggest that adaptive changes during prenatal development in response to maternal dietary manipulation may have long-term sex-specific consequences on the regulation of appetite and metabolism following post-weaning exposure to an energy-rich nutritional environment. © 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CGRP is an important neuropeptide found throughout the cardiovascular system. However, until recently it has been difficult to define its pharmacology or physiological role because of the lack of suitable antagonists. BIBN4096BS is a high-affinity, nonpeptide antagonist that shows much greater selectivity for human CGRP1 receptors compared to any other drug. Its pharmacology has been defined with studies on transfected cells or cell lines endogenously expressing receptors of known composition. These have allowed confirmation that in many human blood vessels, CGRP is working via CGRP1 receptors. However, it also interacts with other CGRP-activated receptors, of unknown composition. In vivo, clinical studies have shown that BIBN4096BS is likely to be useful in the treatment of migraine. It has also been used to define the role of CGRP in phenomena such as plasma extravasation and cardioprotection following ischemia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The calcitonin gene related peptide (CGRP) is a 37 amino acid neuropeptide. Its receptor is a heterodimeric complex of calcitonin receptor-like receptor (CLR) – a family B G-protein coupled receptor – and a single-pass transmembrane protein, receptoractivity modifying protein 1 (RAMP1). Here, we identify residues, within the N-terminal extracellular domain (ECD) of CLR, potentially involved in ligand binding.Certain residues presumed to be possible sites of contact for the CGRP were picked from the CLR/RAMP1 ECD crystal structure (PDB 3N7S). Residues were mutated to alanine (A) bysite-directed mutagenesis (QuikChangeTM, Stratagene). Mutants were analysed for their ability to stimulate cAMP and cell surface expression as previously described [1]. All mutants showed reduced potency, though to varying degrees as indicated by their pEC50 values. W69A and D70Ashowed significant reduction in cell surface expression.These findings suggest that these residues are important for the interaction of CGRP with its receptor. W69A and D70A, part of the WDG motif of family B GPCRs, are thought to rather play a role in receptor stability [2]. The data is consistent with CGRP binding in agroove between CLR and RAMP1. This project was supported byAston School of Life and Health Sciences.References1. Barwell J, Conner A & Poyner D (2011) Extracellular loops 1and 3 and their associated transmembrane regions of the calcitonin receptor-like receptor are needed for CGRP receptor function. Biochim Biophys Acta 1813, 1906–1916.2. Kumar S, Pioszak A, Zhang C et al. (2011) Crystal Structure of the PAC1R Extracellular Domain Unifies a Consensus Fold for Hormone Recognition by Class B G-Protein Cou-pled Receptors. PLoS One 6, e19682