2 resultados para Neurodynamics
em Aston University Research Archive
Resumo:
Attractor properties of a popular discrete-time neural network model are illustrated through numerical simulations. The most complex dynamics is found to occur within particular ranges of parameters controlling the symmetry and magnitude of the weight matrix. A small network model is observed to produce fixed points, limit cycles, mode-locking, the Ruelle-Takens route to chaos, and the period-doubling route to chaos. Training algorithms for tuning this dynamical behaviour are discussed. Training can be an easy or difficult task, depending whether the problem requires the use of temporal information distributed over long time intervals. Such problems require training algorithms which can handle hidden nodes. The most prominent of these algorithms, back propagation through time, solves the temporal credit assignment problem in a way which can work only if the relevant information is distributed locally in time. The Moving Targets algorithm works for the more general case, but is computationally intensive, and prone to local minima.
Resumo:
States or state sequences in neural network models are made to represent concepts from applications. This paper motivates, introduces and discusses a formalism for denoting such representations; a representation for representations. The formalism is illustrated by using it to discuss the representation of variable binding and inference abstractly, and then to present four specific representations. One of these is an apparently novel hybrid of phasic and tensor-product representations which retains the desirable properties of each.