13 resultados para Neopterin
em Aston University Research Archive
Resumo:
The levels of neopterin, biopterin and the neopterin/biopterin ratio (N/B) were measured in urine samples taken from normal young and elderly control subjects, exceptionally healthy elderly control subjects classified according to the ‘Senieur’ protocol and patients with Down’s syndrome (DS) or Alzheimer’s disease (AD). The N/B ratio was approximately unity in control groups with the exception of the normal elderly controls. The levels of neopterin and biopterin declined with age in the exceptionally healthy ‘Senieur’ control group. The N/B ratio was elevated in young and old DS patients as a result of the significant increase in neopterin. Neopterin levels were significantly elevated in AD patients compared with the healthy elderly controls, but this did not result in a significant increase in the N/B ratio in these patients. The N/B ratio increased with age in AD patients as a result of a decline in biopterin. These results suggested that there is a cellular immune reponse in DS and AD patients which in DS, may precede the formation of beta-amyloid deposits in the brain. In addition, there may be a deficiency in tetrahydrobiopterin biosynthesis in AD which becomes more marked with age.
Resumo:
Neopterin, an unconjugated pteridine, is secreted in large quantities by activated macrophages and can be used as a clinical marker of activated cellular immunity in a patient. Hence, neopterin levels were measured in urine samples taken from patients with Down’s syndrome (DS), non-hospitalized and hospitalized Alzheimer’s disease (AD) and age and sex matched controls. All subjects and patients were free from infectious and malignant disease. A significant effect of age on urinary neopterin levels was found in control subjects, levels being greater in younger and older subjects. No significant trends with age were found in AD and DS patients. The mean level of neopterin was significantly increased in DS and AD compared with age matched controls suggesting immune activation in these patients. In DS, elevated neopterin levels were present in individuals at least 17yrs old suggesting that immune activation could be associated with the initial deposition of beta/A4 in the brain.
Resumo:
The unconjugated pterin neopterin is secreted by macrophages activated by interferon-gamma and hence, the level of neopterin in serum may be used as a marker of a cellular immune response in a patient. Serum neopterin levels were measured by high performance liquid chromatography (HPLC) in 28 Parkinson's disease (PD) patients and 28 age and sex matched controls. The level of serum neopterin was significantly elevated in PD compared with controls suggesting immune activation in these patients. The level of neopterin was negatively correlated with the level of binding of gallium to transferrin (Tf) but unrelated to the level of iron binding. Hence, in PD, it is possible that a cellular immune response may be important in the pathogenesis of the disease. One effect of the cellular immune response may be a reduction in the binding of metals other than iron to Tf and this could also be a factor in PD.
Resumo:
Total biopterin, neopterin and creatinine were measured in spot urine samples from affective disorder patients on lithium therapy and control subjects. Folic acid was also measured in plasma in a sample of the patients. The mean neopterin: biopterin ratio was significantly higher in the 76 patients (3.2 +/- 0.5) than in the 61 controls (1.8 +/- 0.1). In female patients biopterin levels were significantly lower than in controls. In the control groups there was a significant correlation between the molar concentration of neopterin and biopterin. No such correlation was found in the patients. These data indicate that tetrahydrobiopterin (BH4) biosynthesis is reduced in this group. A significant positive correlation was found between plasma folate and urinary biopterin. It is suggested that folate deficiency may impair the synthesis of BH4, a cofactor essential for the synthesis of 5-HT and other monoamines that are involved in the pathogenesis of affective disorders.
Resumo:
Tetrahydrobiopterin synthesis is reduced in Down's syndrome as measured by a) a persistently high urine neopterin biopterin ratio during life, b) a reduced urine isoxanthopterin output and c) a delayed P100 visual evoked potential.
Resumo:
The P2 visual evoked response in man has a cholinergic component while the P100 response has not. The P100 latency is significantly decreased after an oral dose of phenylalanine in man while the P2 signal is unaffected. Analyses of the P100 decrease shows no correlation with tyrosine levels but a significant positive correlation with plasma ane urine levels. A small group shows a P100 delay which correlated with increased neopterin levels only. Increased plasma total biopterins in man following a phenylalanine dose are due to rapidly increased tetrahydrobiopterin synthesis in the liver.
Resumo:
Kynurenine (KYN) is the first stable metabolite of the kynurenine pathway, the major route of tryptophan. (TRP) metabolIsm. In the liver, cortisol-inducible tIyptophan-2,3-dioxygenase (TDO) is the first enzyme and rate limiting step. In extrahepatic tissues, it is superceded by indoleamine-2,3-dioxygenase (IDO), an enzyme with a wider substrate specificity. Earlier work in this research group has found substantial elevations in plasma KYN in fasting Tourette's Syndrome (TS) patients with normal TRP and neopterin. The aim of our initial pilot study was to confirm this increase in KYN in fasting human TS patients compared with normal controls, and to see how changes in diet :ay influence certain kynurenine pathway variables. However, we failed to detect a change in plasma KYN, TRP, kynurenic acid (KYNA), neopterin or cortisol between the fasting TS and control groups. Moreover, none of the variables was affected by dietary status, and thus candidates selected for the larger cross-sectional study were permitted to eat and drink freely on the day that blood samples were submitted, but were requested to avoid products containing caffeine, aspirin or nicotine. In the cross-sectional study, TS patients exhibited significantly higher plasma KYN concentrations than controls, although the magnitude of the change was much smaller than originally found. This may be due to differences in detection procedure and the seasonal fluctuation of some biochemical variables, notably cortisol. The generalised increase in neopterin in the TS subject group, suggests a difference in the activity of cytokine-inducible IDO as a likely source for this elevated KYN. Other kynurenine pathway metabolites, specifIcally TRP, 3-hydroxykynurenine (HKY), 3-hydroxyanthranilic acid (HAA) and KYNA were unchanged. In view of recent speculation of the potential therapeutic effects of nicotine in TS, the lower KYN concentrations observed in TS smokers, compared with non-smoking TS patients, was another interesting finding. Tic-like movements, such as head-shakes (HS), which occur in rodents both spontaneously and following diverse drug treatments, closely resemble tic behaviours in humans. The animal tic model was used to examine what effects nicotine may have on shaking behaviours and on selected TRP metabolites. Acute systemic administration of nicotine to mice, produced a dose-dependent reduction in HS frequency (induced by the 5-HT2A/2C agonist DOl), which appeared to be mediated via central nicotinic cholinergic receptors, since mecamylamine pretreatment abolished this effect. Conversely, twice daily subcutaneous injections of nicotine for 7 days, led to an increase in spontaneous and DOI-induced HS. Chronic nicotine also caused a significant elevation m plasma and whole brain KYN concentrations, but plasma TRP, HKY, HAA and KYNA were unaltered. In addition, no change in brain 5-HT or 5-HIAA concentrations or 5-HT turnover, was found. Despite contrasting results from human and animal studIes, a role for nicotine in the mediation of tic-like movements is indicated. The relevance of the kynurenine pathway to TS and the potential role played by nicotine in modifying tic-like behaviours is discussed.
Resumo:
Kynurenine (KYN) is the first stable metabolite of the kynurenine pathway, which accounts for over 95% of tryptophan metabolism. Two previous studies by this research group reported elevated plasma KYN in Tourette syndrome (TS) patients when compared with age and sex matched controls and another study showed that KYN potentiated 5-HT2A-mediated head-shakes (HS) in rodents. These movements have been suggested to model tics in TS. This raised the questions how KYN acts in eliciting this response and whether it is an action of its own or of a further metabolite along the kynurenine pathway. In the liver, where most of the kynurenine pathway metabolism takes place under physiological conditions, the first and the rate limiting enzyme is tryptophan-dioxygenase (TDO) which can be induced by cortisol. In extrahepatic tissues the same step of the pathway is catalyzed by indoleamine-dioxygenase (IDO), which is induced by cytokines, predominantly interferon-y (INF-y). Plasma neopterin, which shows parallel increase with KYN following immune stimulation, was also found elevated in one of these studies positively correlating with KYN. In the present work animal studies suggested that KYN potentiates and quinolinic acid (QUINA) dose dependently inhibits the 5-HT2A-mediated HS response in mice. The potentiating effect seen with KYN was suggested to be an effect of KYN itself. Radioligand binding and phosphoinositide (PI) hydrolysis studies were done to explore the mechanisms by which kynurenine pathway metabolites could alter a 5-HT2A-receptor mediated response. None of the kynurenine pathway metabolites tested showed direct binding to 5-HT2A-receptors. PI hydrolysis studies with KYN and QUINA showed that KYN did not have any effect while QUINA inhibited 5-HT2A-mediated PI hydrolysis. Plasma cortisol determination in TS patients with elevated plasma KYN did not show elevated plasma cortisol levels, suggesting that the increase of plasma KYN in these TS patients is unlikely to be due to an increased TDO activity induced by increased cortisol. Attention deficit hyperactivity disorder (ADHD) is commonly associated with TS. Salivary cortisol detected in a group of children primarily affected with ADHD showed significantly lower salivary cortisol levels when compared with age and sex matched controls. Plasma tryptophan, KYN, neopterin, INF-y and KYN/tryptophan ratio and night-time urinary 6-sulphatoxymelatonin (aMT6s) excretion measured in a group of TS patients did not show any difference in their levels when compared with age and sex matched controls, but TS patients failed to show the expected positive correlation seen between plasma INF-y, neopterin and KYN and the negative correlation seen between plasma KYN and night-time urinary aMT6s excretion seen in healthy controls. The relevance of the kynurenine pathway, melatonin secretion and cortisol to Tourette Syndrome and associated conditions and the mechanism by which KYN and QUINA alter the 5-HT2A-receptor mediated HS response are discussed.
Resumo:
The binding of iron (59Fe) and gallium (67Ga) to the plasma protein transferrin (Tf) was investigated by G75 gel filtration chromatography in control patients and treated and untreated patients with Parkinson's disease (PD). Fe-Tf binding was 100% in all controls and PD patients suggesting that a defect in Fe-Tf binding was not involved in the aetiology of PD. Ga-Tf binding was significantly reduced in both untreated and treated PD patients compared to controls. In addition, treated PD patients had significantly higher Ga-Tf binding than untreated patients. A reduction in metal binding to Tf could result in the increase of a low molecular weight species which may more readily enter the CNS. Alternatively, it could lead to a decrease in the transport of essential metals into the brain via the Tf receptor system. A significant elevation in neopterin was demonstrated within the plasma of untreated PD patients compared to controls suggesting the activation of a cellular immune response. Furthermore, plasma neopterin was lower in treated compared to untreated PD patients, although the difference was not significant. There was no evidence for the activation of the humoral immune response in untreated or treated PD patients as measured by circulating immune complex (CIC) levels within the plasma. An inverse relationship between Ga-Tf binding and neopterin was observed in untreated PD patients. The addition of oxidants in the form of potassium permanganate and activated manganese dioxide reduced Ga-Tf binding in control plasma. However, relatively little response was observed using monocyte preparations. The results suggest that oxidants produced by activation of the cellular immune system could damage the Tf molecule thereby reducing its ability to bind metals.
Resumo:
Tetrahydrobiopterin is the cofactor for the hydroxylation of phenylalanine, tyrosine and tryptophan and is therefore essential for the production of monoamine neurotransmitters. Neopterin, a biosynthetic precusor of tetrahydrobiopterin, and biopterin appear in urine. In normal subjects the urinary neopterin to biopterin ratio has been found to be about 1.00. In patients suffering from Alzheimer's disease, Down's syndrome and depression the urinary neopterin to biopterin ratio has been found to be elevated. In some Alzheimer's and depressed patients the increased urinary neopterin to biopterin ratio is proportional to the severity of the disease. Folates were found not to increase tetrahydrobiopterin biosynthesis in the rat as previously thought. Methotrexate was found to reduce liver biopterin levels and increas_ urinary biopterin levels in the rat. Methotrexate also reduced brain pterin levels but had no influence on liver pterin. Urinary isoxanthopterin, found in some patients, was found to be derived from biopterin and neopterin in the rat. Isoxanthopterin is proposed as an indicator of the levels of tetrahydrobiopterin turnover.
Resumo:
Excretion of biopterin and the related pteridines neopterin and pterin was measured in urine samples from a group of 76 male and female unipolar and bipolar depressed outpatients receiving lithium therapy, and compared to 61 male and female control subjects. The ratio of neopterin to biopterin excreted (N/B) was significantly higher in the patients than the controls. The significant positive correlation between urinary neopterin and biopterin shown by the controls was absent in the patients, indicating disrupted biosynthesis of tetrahydrobiopterin.Urinary cortisol excretion in depressed patients was similar to controls, implying normal hypothalmus-pituitary-adrenal axis function in these patients, Serum folate was shown to correlate with urinary total biopterin excretion in female unipolar patients. Two groups of elderly females with senile dementia of Alzheimer type (SDAT) were examined for urinary pteridine excretion. In the first study of 10 patients, the N/B ratio was significantly higher than in 24 controls and the ratio B/B+ N significantly lower. A second study of 30 SDAT patients and 21 controls confirmed these findings. However, neopterin correlated with biopterin in both patients and controls, indicating that the alteration in tetrahydrobiopterin metabolism may be different to that shown in depression. Lithium had no effect in vivo or in vitro on Wistar rat brain or liver biosynthesis of tetrahydrobiopterin at a range of concentrations and duration of dosing period, showing that lithium was not responsible for the lowered biopterin excretion by depressed patients. No significant effects on tetrahydrobiopterin metabolism in the rat were shown by the tricyclic antidepressant imipramine, the anticonvulsant sodium valproate, the vitamin folic acid, the anticatecholaminergic agent amethylparatyrosine, the synthetic corticosteroid dexamethasone, or stimulation of natural cortisol by immobilisation stress. Scopolamine, an ant ichol inergic drug, lowered rat brain pterin which may relate to the tetrahydrobiopterin deficits shown in SDAT.
Resumo:
The study of tic-like movements in mice has demonstrated close parallels both in characteristics and in pharmacology with the tics which occur in TS. Head-shakes and/or other tic-like behaviours occurring spontaneously or induced by the selective 5-HT2/1C agonist DOI, alpha-melanocyte stimulating hormone, adrenocorticotrophic hormone (1-39), thyrotropin releasing hormone, or RX336-M were blocked when tested with neuroleptics such as haloperidol and/or the alpha-2 adrenoceptor agonist clonidine. The selective dopamine D1 antagonists SCH23390 and SCH39166 dose-dependently blocked spontaneous and DOI head-shakes but the selective dopamine D2 antagonists sulpiride and raclopride were ineffective. The 5-HT1A receptor agonists 8-OH-DPAT, ipsapirone, gepirone, MDL 73005EF and buspirone (i.p) dose-dependently blocked DOI head-shakes, pindolol blocked the inhibitory effect of 8-OH-DPAT on DOI head-shakes. Parachlorophenylalanine blocked the inhibitory effect of 8-OH-DPAT and buspirone, suggesting that the 5-HT1A receptor involved is located presynaptically. The alpha-2 adrenoceptor antagonists yohimbine, idazoxan, 1-PP and RX811059 prevented the inhibitory effect of 8-OH-DPAT on DOI head-shakes suggesting that this 5-HT1A - 5-HT2 receptor interaction is under the modulatory control of adrenoceptors. Because kynurenine has previously been found to potentiate head-shaking, plasma kynurenine concentrations were measured in seven TS patients and were significantly higher than controls, but neopterin and biopterin were unchanged. The relationship between tic-like movements in rodents and their implications for understanding the aetiology and treatment of TS is discussed.