8 resultados para Natural polymers

em Aston University Research Archive


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Biocomposite films comprising a non-crosslinked, natural polymer (collagen) and a synthetic polymer, poly(var epsilon-caprolactone) (PCL), have been produced by impregnation of lyophilised collagen mats with a solution of PCL in dichloromethane followed by solvent evaporation. This approach avoids the toxicity problems associated with chemical crosslinking. Distinct changes in film morphology, from continuous surface coating to open porous format, were achieved by variation of processing parameters such as collagen:PCL ratio and the weight of the starting lyophilised collagen mat. Collagenase digestion indicated that the collagen content of 1:4 and 1:8 collagen:PCL biocomposites was almost totally accessible for enzymatic digestion indicating a high degree of collagen exposure for interaction with other ECM proteins or cells contacting the biomaterial surface. Much reduced collagen exposure (around 50%) was measured for the 1:20 collagen:PCL materials. These findings were consistent with the SEM examination of collagen:PCL biocomposites which revealed a highly porous morphology for the 1:4 and 1:8 blends but virtually complete coverage of the collagen component by PCL in the1:20 samples. Investigations of the attachment and spreading characteristics of human osteoblast (HOB) cells on PCL films and collagen:PCL materials respectively, indicated that HOB cells poorly recognised PCL but attachment and spreading were much improved on the biocomposites. The non-chemically crosslinked, collagen:PCL biocomposites described are expected to provide a useful addition to the range of biomaterials and matrix systems for tissue engineering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since molecularly imprinted polymers (MIPs) are designed to have a memory for their molecular templates it is easy to draw parallels with the affinity between biological receptors and their substrates. Could MIPs take the place of natural receptors in the selection of potential drug molecules from synthetic compound libraries? To answer that question this review discusses the results of MIP studies which attempt to emulate natural receptors. In addition the possible use of MIPs to guide a compound library synthesis towards a desired biological activity is highlighted. © 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of the work described was to identify and synthesize a range of biodegradable hypercoiling or hydrophobically associating polymers to mimic natural apoproteins, such as those found in lung surfactant or plasma apolipoproteins. Stirred interfacial polymerization was used to synthesize potentially biodegradable aromatic polyamides (Mw of 12,000-26,000) based on L-Iysine, L-Iysine ethyl ester, L-ornithine and DL-diaminopropionic acid, by reaction with isophthaloyl chloride. A similar technique was used to synthesize aliphatic polyamides based on L-Iysine ethyl ester and either adipoyl chloride or glutaryl chloride resulting in the synthesis of poly(lysine ethyl ester adipamide) [PLETESA] or poly(lysine ethyl ester glutaramide) (Mw of 126,000 and 26,000, respectively). PLETESA was found to be soluble in both polar and non-polar solvents and the hydrophobic/hydrophilic balance could be modified by partial saponification (66-75%) of the ethyl ester side chains. Surface or interfacial tension/pH profiles were used to assess the conformation of both the poly(isophthalamides) and partially saponified PLETESA in aqueous solution. The results demonstrated that a loss of charge from the polymer was accompanied by an initial fall in surface activity, followed by a rise in activity, and ultimately, by polymer precipitation. These observations were explained by a collapse of the polymer chains into non-surface active intramolecular coils, followed by a transition to an amphipathic conformation, and finally to a collapsed hydrophobe. 2-Dimensional NMR analysis of polymer conformation in polar and non-polar solvents revealed intramolecular associations between the hydrophobic groups within partially saponified PLETESA. Unsaponified PLETESA appeared to form a coiled structure in polar solvents where the ethyl ester side chains were contained within the polymer coil. The implications of the secondary structure of PLETESA and potential biomedical applications are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the main objectives of this study was to functionalise various rubbers (i.e. ethylene propylene copolymer (EP), ethylene propylene diene terpolymer (EPDM), and natural rubber (NR)) using functional monomers, maleic anhydride (MA) and glycidyl methacrylate (GMA), via reactive processing routes. The functionalisation of the rubber was carried out via different reactive processing methods in an internal mixer. GMA was free-radically grafted onto EP and EPDM in the melt state in the absence and presence of a comonomer, trimethylolpropane triacrylate (TRlS). To optinuse the grafting conditions and the compositions, the effects of various paranleters on the grafting yields and the extent of side reactions were investigated. Precipitation method and Soxhlet extraction method was established to purifY the GMA modified rubbers and the grafting degree was determined by FTIR and titration. It was found that without TRlS the grafting degree of GMA increased with increasing peroxide concentration. However, grafting was low and the homopolymerisation of GMA and crosslinking of the polymers were identified as the main side reactions competing with the desired grafting reaction for EP and EPDM, respectively. The use of the tri-functional comonomer, TRlS, was shown to greatly enhance the GMA grafting and reduce the side reactions in terms of the higher GMA grafting degree, less alteration of the rheological properties of the polymer substrates and very little formation of polyGMA. The grafting mechanisms were investigated. MA was grafted onto NR using both thermal initiation and peroxide initiation. The results showed clearly that the reaction of MA with NR could be thermally initiated above 140°C in the absence of peroxide. At a preferable temperature of 200°C, the grafting degree was increased with increasing MA concentration. The grafting reaction could also be initiated with peroxide. It was found that 2,5-dimethyl-2,5-bis(ter-butylproxy) hexane (TIOI) was a suitable peroxide to initiate the reaction efficiently above I50°C. The second objective of the work was to utilize the functionalised rubbers in a second step to achieve an in-situ compatibilisation of blends based on poly(ethylene terephthalate) (PET), in particular, with GMA-grafted-EP and -EPDM and the reactive blending was carried out in an internal mixer. The effects of GMA grafting degree, viscosities of GMAgrafted- EP and -EPDM and the presence of polyGMA in the rubber samples on the compatibilisation of PET blends in terms of morphology, dynamical mechanical properties and tensile properties were investigated. It was found that the GMA modified rubbers were very efficient in compatibilising the PET blends and this was supported by the much finer morphology and the better tensile properties. The evidence obtained from the analysis of the PET blends strongly supports the existence of the copolymers through the interfacial reactions between the grafted epoxy group in the GMA modified rubber and the terminal groups of PET in the blends.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of ester plasticizers and copolymers on the mechanical properties of the natural biodegradable polymers, poly(3-hydroxybutyrate) [PHB] and poly(lactic acid) [PLA] have been studied after subjecting to melt processing conditions. Ester plasticizers were synthesized from citric, tartaric and maleic acids using various alcohols. A variety of PLA copolymers have also been prepared from poly(ethylene glycol) derivatives using stannous octanoate catalysed ring opening polymerisations of DL-lactide. A novel PLA star copolymer was also prepared from an ethoxylated pentaerythritol. The structures of these copolymers were determined by NMR spectroscopy. The plasticizing effect of the synthesised additives at various concentrations was determined. While certain additives were capable of improving the mechanical properties of PLA, none were effective in PHB. Moreover, it was found that certain combinations of additives exhibited synergistic effects. Possible mechanisms are discussed. Biotic and abiotic degradation studies showed that the plasticizers (esters and copolymers) did not inhibit the biodegradability of PHB or PLA in compost at 60°C. Simple toxicity tests carried out on compost extract and its ability to support the growth of cress seeds was established. PLA was found to be susceptible to limited thermal degradation under melt processing conditions. Conventional phenolic antioxidants showed no significant effect on this process, suggesting that degradation was not predominantly a free radical process. PLA also underwent photo-oxidative degradation with UV light and the process could be accelerated in the presence of a photoactivator such as iron (III) diisononyl dithiocarbamate. The mechanisms for the above processes are discussed. Finally, selected compounds were prepared on a pilot plant scale. Extruded and blown films were prepared containing these additives with conventional polymer processing equipment. The mechanical properties were similar to those obtained with laboratory produced compression moulded films.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main aim of this work was to study the effect of two comonomers, trimethylolpropane trimethacrylate (TRIS) and divinylbenzene (DVB) on the nature and efficiency of grafting of two different monomers, glycidyl methacrylate (GMA) and maleic anhydride (MA) on polypropylene (P) and on natural rubber (NR) using reactive processing methods. Four different peroxides, benzoyl peroxide (BPO), dicumyl peroxide (DCP), 2,5-dimethyl-2,5-bis-(tert-butyl peroxy) hexane (t-101), and 1,1-di(tert-butylperoxy)-3,3,5-trimethyl cyclohexene (T-29B90) were examined as free radical initiators. An appropriate methodology was established and chemical composition and reactive processing parameters were examined and optimised. It was found that in the absence of the coagents DVB and TRIS, the grafting degree of GMA and MA increased with increasing peroxide concentration, but the level of grafting was low and the homopolymerisaton of GMA and the crosslinking of NR or chain scission of PP were identified as the main side reactions that competed with the desired grafting reaction in the polymers. At high concentrations of the peroxide T-101 (>0.02 mr) cross linking of NR and chain scission of PP became dominant and unacceptable. An attempt to add a reactive coagent, e.g. TRIS during grafting of GMA on natural rubber resulted in excessive crosslinking because of the very high reactivity of this comonomer with the C=C of the rubber. Therefore, the use of any multifunctional and highly reactive coagent such as TRIS, could not be applied in the grafting of GAM onto natural rubber. In the case of PP, however, the use of TRIS and DVB was shown to greatly enhance the grafting degree and reduce the chain scission with very little extent of monomer homopolymerisation taking place. The results showed that the grafting degree was increased with increasing GMA and MA concentrations. It was also found that T-101 was a suitable peroxide to initiate the grafting reaction of these monomers on NR and PP and the optimum temperature for this peroxide was =160°C. A very preliminary work was also conducted on the use of the functionalised-PP (f-PP) in the absence and presence of the two comonomers (f-PP-DVB or f-PP-TRIS) for the purpose of compatibilising PP-PBT blends through reactive blending. Examination of the morphology of the blends suggested that an effective compatibilisation has been achieved when using f-PP-DVB and f-PP-TRIS, however more work is required in this area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Triggered biodegradable composites made entirely from renewable resources are urgently sought after to improve material recyclability or be able to divert materials from waste streams. Many biobased polymers and natural fibers usually display poor interfacial adhesion when combined in a composite material. Here we propose a way to modify the surfaces of natural fibers by utilizing bacteria (Acetobacter xylinum) to deposit nanosized bacterial cellulose around natural fibers, which enhances their adhesion to renewable polymers. This paper describes the process of modifying large quantities of natural fibers with bacterial cellulose through their use as substrates for bacteria during fermentation. The modified fibers were characterized by scanning electron microscopy, single fiber tensile tests, X-ray photoelectron spectroscopy, and inverse gas chromatography to determine their surface and mechanical properties. The practical adhesion between the modified fibers and the renewable polymers cellulose acetate butyrate and poly(L-lactic acid) was quantified using the single fiber pullout test. © 2008 American Chemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several ester derivatives of rosmarinic acid (rosmarinates) were synthesised, characterised (1D and 2D NMR, UV and FTIR spectroscopy) and tested for their potential use as antioxidants derived from a renewable natural resource. The intrinsic free radical scavenging activity of the rosmarinates was assessed, initially using a modified DPPH (2, 2-diphenyl-1-picrylhydrazyl radical) method, and found to be higher than that of commercial synthetic hindered phenol antioxidants Irganox 1076 and Irganox 1010. The thermal stabilising performance of the rosmarinates in polyethylene (PE) and polypropylene (PP) was subsequently examined and compared to that of samples prepared similarly but in the presence of Irganox 1076 (in PE) and Irganox 1010 (in PP) which are typically used for polyolefin stabilisation in industrial practice. The melt stability and the long-term thermo-oxidative stability (LTTS) of processed polymers containing the antioxidants were assessed by measuring the melt flow index (MFI), melt viscosity, oxidation induction time (OIT) and long-term (accelerated) thermal ageing performance. The results show that both the melt and the thermo-oxidative stabilisation afforded by the rosmarinates, and in particular the stearyl derivative, in both PE and PP, are superior to those of Irganox 1076 and Irganox 1010, hence their potential as effective sustainable bio-based antioxidants for polymers. The rosmarinic acid used for the synthesis of the rosmarinates esters in this study was obtained from commercial rosemary extracts (AquaROX80). Furthermore, a large number of different strains of UK-grown rosemary plants (Rosmarinum officinalis) were also extracted and analysed in order to examine their antioxidant content. It was found that the carnosic and the rosmarinic acids, and to a much lesser extent the carnosol, constituted the main antioxidant components of the UK-plants, with the two acids being present at a ratio of 3:1, respectively.