7 resultados para Natural and Synthetic Rubber,

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biocomposite films comprising a non-crosslinked, natural polymer (collagen) and a synthetic polymer, poly(var epsilon-caprolactone) (PCL), have been produced by impregnation of lyophilised collagen mats with a solution of PCL in dichloromethane followed by solvent evaporation. This approach avoids the toxicity problems associated with chemical crosslinking. Distinct changes in film morphology, from continuous surface coating to open porous format, were achieved by variation of processing parameters such as collagen:PCL ratio and the weight of the starting lyophilised collagen mat. Collagenase digestion indicated that the collagen content of 1:4 and 1:8 collagen:PCL biocomposites was almost totally accessible for enzymatic digestion indicating a high degree of collagen exposure for interaction with other ECM proteins or cells contacting the biomaterial surface. Much reduced collagen exposure (around 50%) was measured for the 1:20 collagen:PCL materials. These findings were consistent with the SEM examination of collagen:PCL biocomposites which revealed a highly porous morphology for the 1:4 and 1:8 blends but virtually complete coverage of the collagen component by PCL in the1:20 samples. Investigations of the attachment and spreading characteristics of human osteoblast (HOB) cells on PCL films and collagen:PCL materials respectively, indicated that HOB cells poorly recognised PCL but attachment and spreading were much improved on the biocomposites. The non-chemically crosslinked, collagen:PCL biocomposites described are expected to provide a useful addition to the range of biomaterials and matrix systems for tissue engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystal structure of natural magnetite has been investigated on the basis of previously published X-ray intensity data and a newly acquired, more extensive data base. Both investigations show that the structure does not conform to the centrosymmetrical space group Fd3m, as is normally assumed, but the non-centrosymmetrical space group F43m. The structure refinement provides values for the atom positions, anisotropic thermal parameters and bond lengths. A study of Friedel related pairs of X-ray intensities shows that Friedel's law is violated in magnetite, further confirming that the space group is non-centrosymmetrical. It was found that the octahedral site cations in magnetite do not occupy special positions at the centres of the octahedral interstices as they should under the space group Fd3m, but are displaced along <111 > directions leading to F43m symmetry. A mechanism is known for the origin of these displacements and the likelihood of similar displacements occurring in other natural and synthetic spinels is discussed. The crystal structure of a natural titanomaghemite was determined by a combination of X-ray diffraction and Mõssbauer spectroscopy. This was confirmed as possessing a primitive cubic Bravais lattice with the space group P4332 and the structural formula: Fe3+.0.96 0 0.04 [Fe2+0.23 Fe3+0.99 Ti4+0.42 0 0.37 ] 042 - where 0 represents a cation vacancy. As the above formula shows, there are cation vacancies on both tetrahedral arrl octahedral sites, the majority being restricted to octahedral sltes. No tetrahedral site Fe2+ or Ti4+ was observed. Values for the atom positions, anisotropic thermal parameters and bond lengths have been determined for this particular specimen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The major challenge of MEG, the inverse problem, is to estimate the very weak primary neuronal currents from the measurements of extracranial magnetic fields. The non-uniqueness of this inverse solution is compounded by the fact that MEG signals contain large environmental and physiological noise that further complicates the problem. In this paper, we evaluate the effectiveness of magnetic noise cancellation by synthetic gradiometers and the beamformer analysis method of synthetic aperture magnetometry (SAM) for source localisation in the presence of large stimulus-generated noise. We demonstrate that activation of primary somatosensory cortex can be accurately identified using SAM despite the presence of significant stimulus-related magnetic interference. This interference was generated by a contact heat evoked potential stimulator (CHEPS), recently developed for thermal pain research, but which to date has not been used in a MEG environment. We also show that in a reduced shielding environment the use of higher order synthetic gradiometry is sufficient to obtain signal-to-noise ratios (SNRs) that allow for accurate localisation of cortical sensory function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Incorporation of the glycolipid trehalose 6,6′-dibehenate (TDB) into cationic liposomes composed of the quaternary ammonium compound dimethyldioctadecylammonium (DDA) produce an adjuvant system which induces a powerful cell-mediated immune response and a strong antibody response, desirable for a high number of disease targets. We have used differential scanning calorimetry (DSC) to investigate the effect of TDB on the gel-fluid phase transition of DDA liposomes and to demonstrate that TDB is incorporated into DDA liposome bilayers. Transmission Electron Microscopy (TEM) and cryo-TEM confirmed that liposomes were formed when a lipid film of DDA containing small amounts of TDB was hydrated in an aqueous buffer solution at physiological pH. Furthermore, time development of particle size and zeta potential of DDA liposomes incorporating TDB during storage at 4°C and 25°C, indicates that TDB effectively stabilizes the DDA liposomes. Immunization of mice with the mycobacterial fusion protein Ag85B-ESAT-6 in DDA-TDB liposomes induced a strong, specific Th1 type immune response characterized by substantial production of the interferon-γ cytokine and high levels of IgG2b isotype antibodies. The lymphocyte subset releasing the interferon-γ was identified as CD4 T cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clay minerals, both natural and synthetic, have a wide range of applications. Smectite clays are not true insulators, their slight conductivity has been utilized by the paper industry in the development of mildly conducting paper. In particular, the synthetic hectorite clay, laponite, is employed to produce paper which is used in automated drawing offices where electro graphic printing is common. The primary objective of this thesis was to modify smectite clays, particularly laponite, to achieve enhanced conductivity. The primary objective was more readily achieved if the subsidiary objective of understanding the mechanism of conductivity was defined. The cyclic voltammograms of some cobalt complexes were studied in free solution and as clay modified electrodes to investigate the origin of electroactivity in clay modified electrodes. The electroactivity of clay modified electrodes prepared using our method can be attributed to ion pairs sorbed to the surface of the electrode, in excess of the cationic exchange capacity. However, some new observations were made concerning the co-ordination chemistry of the tri-2-pyridylamine complexes used which needed clarification. The a.c. conductivity of pressed discs of laponite RD was studied over the frequency range 12Hz- 100kHz using three electrode systems namely silver-loaded epoxy resin (paste), stainless-steel and aluminium. The a. c. conductivity of laponite consists of two components, reactive (minor) and ionic (major) which can be observed almost independently by utilizing the different electrode systems. When the temperature is increased the conductivity of laponite increases and the activation energy for conductivity can be calculated. Measurement of the conductivity of thin films of laponite RD in two crystal planes shows a degree of anisotropy in the a.c. conductivity. Powder X-ray diffraction and 119Sn Mossbauer spectroscopy studies have shown that attempts to intercalate some phenyltin compounds into laponite RD under ambient conditions result in the formation of tin(IV) oxide pillars. 119Sn Mossbauer data indicate that the order of effectiveness of conversion to pillars is in the order: Ph3SnCl > (Ph3Sn)2O, Ph2SnCl2 The organic product of the pillaring process was identified by 13C m.a.s.n.m.r. spectroscopy as trapped in the pillared lattice. This pillaring reaction is much more rapid when carried out in Teflon containers in a simple domestic microwave oven. These pillared clays are novel materials since the pillaring is achieved via neutral precursors rather than sacrificial reaction of the exchangeable cation. The pillaring reaction depends on electrophilic attack on the aryl tin bond by Brønsted acid sites within the clay. Two methods of interlamellar modification were identified which lead to enhanced conductivity of laponite, namely ion exchange and tin(IV) oxide pillaring. A monoionic potassium exchanged laponite shows a four fold increase in a.c. conductivity compared to sodium exchanged laponite RD. The increased conductivity is due to the appearence of an ionic component. The conductivity is independent of relative humidity and increases with temperature. Tin(IV) oxide pillared laponite RD samples show a significant increase in conductivity. Samples prepared from Ph2SnCl2 show an increase in excess of an order of magnitude. The conductivity of tin(IV) oxide pillared laponite samples is dominated by an ionic component.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This chapter deals with the physicochemical aspects of structure-property relationships in synthetic hydrogels, with particular reference to their application in optometry and ophthalmology. It demonstrates the ways in which the amount of water contained in the hydrogel network can be manipulated by changes in copolymer composition and illustrates the advantages and limitations imposed by use of water as a means of influencing surface, transport and mechanical properties of the gel. The chapter then illustrates how this basic understanding has formed a platform for the development of synthetic interpenetrating networks and macroporous materials, and of hybrids of natural and synthetic hydrogels. The behaviour of these more complex systems is not so centrally dominated by the equilibrium water content as is the case with homogeneous synthetic hydrogels, thus providing advantageous ways of extending the properties and applications of these interesting materials.