5 resultados para National Institute of Standards and Technology (U.S.). Technology Services.
em Aston University Research Archive
Resumo:
This research is an Anglo-Indian comparative case study. It studies managerial action in the participation arena of two British multi-nationals i.e. Cadbury Limited and ICI plc. The research was carried out in matched pairs of factories of the above named companies, located in the Midlands of the UK and in Bombay in India. The data for this research was collected through semi-structured interviews with managers and non-management actors, study of company documents and non-participant observation of some participation forums. The research conceptualises the idea of a `participation arena' consisting of the structures, processes, purposes and dynamics of participation. This arena is visualised as broadly reflecting the organisation structure and can be divided into corporate, unit and shopfloor level. Managerial action in this arena is examined in terms of interaction between three sets of factors i.e. company business objectives, strategies and policies; managerial values of power and control; and the responses of unions. Similarities and differences between management action in the home and host plants of the two multi-national companies are also examined. The major findings of the research are as follows. There is significant difference between the participation arena of the parent and the subsidiary company. The latter is marked by absence of higher level participation forums and lack of opportunity for employees to discuss, let alone influence, key decisions. This results from parent company control over key activities of the subsidiary. The similarities in management action in the participation arenas of the two companies in both countries can be attributed to the operation of the three sets of factors mentioned above. Nevertheless, the particular circumstances of each company are a greater influence on managerial action than the national context. Finally, future areas of research in this field are explored.
Resumo:
The last decade or so has witnessed the emergence of the national innovation system (NIS) phenomenon. Since then, many scholars have investigated NIS and its implementation in different countries. However, there are very few investigations into the relationship between the NIS of a country and its national innovation capacity. This paper aims to make a contribution in this area by examining the link that currently exists between these two topics. Whilst examining this relationship, we also explore internationalisation and technology transfer, being cognate areas that have been investigated during the same period. This follows our assertion that the link between NIS and national innovation capacity is the mechanism of internationalisation and technology transfer. The NIS approach was introduced in the late 1980s (see Freeman, 1987; Dosi et al., 1988) and further elaborated later (see Lundvall, 1992; Nelson, 1993; Edquist, 1997). In essence, a country?s NIS is a historically grown subsystem of the entire national economy consisting of organisations and institutions which play a major role in the innovative activity in the country. In the NIS approach, interactions within organisations as well as the interplay between organisations and institutions are of central importance. The NIS approach has been used to reveal the structure of the innovation processes and the main actors involved in them in industrialised and emerging countries. Although the national focus remains strong, it has been accompanied by studies seeking to analyse the notion of systems of innovation at an international level and at a sub-national scale (Archibugi et al., 1999). Dosi in the edition of Archibugi et al. (1999) argues that the general background of the discussion of national systems is the observation of non-random distributions across countries of: corporate capabilities; organisational forms; strategies; and ultimately revealed performances, in terms of production efficiency and inputs productivities, rates of innovation, rates of adoption/diffusion of innovation themselves, dynamics of market shares on the world markets, growth of income and employment. They also mention that there are several approaches to NIS. Nelson (1993) focuses upon the specificities of national institutions and policies supporting directly or indirectly innovation, diffusion and skills accumulation. Patel and Pavitt (1991) have stressed the links between the national patterns of technological accumulation and the competencies and innovative strategies of a few major national companies. Amable et al (1997) and Soskice (1993) and Zysman (1994) focus on the specifics of national institutions including, for example, the forms of organization, financial and labour markets, training institutions, forms of state intervention in the economy etc. However, the most common reference is by Lundvall (1992) who argues that the focus on the national level is associated with the fact that national economies vary according to their production system and their institutional framework and these differences are in turn strengthened by different historical experiences, language and culture. On the other hand, the national innovation capability consists of abilities to create and carry new technological possibilities through to economic practice. The term covers a wide range of activities from capability to invent to capability to innovate and to capability to improve existing technology beyond the original design parameters (Kim, 1997). The term innovation is often associated by many with technological change at international frontiers. However, technological capability is not the same as innovation capability. Technological capability refers to assimilation, use, adaptation, and change to existing technologies. It also enables the creation of new technologies and development of new products and processes in response to changing economic environments. It denotes operational command over knowledge (Kim, 1997). It is manifested not merely by the knowledge possessed, but, more important, by the uses to which that knowledge can be put and by the proficiency with which it is applied in the activities of investment and production and in the creation of new knowledge (Westphal et al., 1985). Therefore, the analytical framework that is used in this paper is based on the way a country derives from its NIS a national innovation capacity. There are two perspectives that are identified on this way. These are internationalisation and technology transfer. Even though NIS is not directly related to national innovation capacity, to achieve national innovation capacity from NIS, the country should have the ability for technology transfer. Technology transfer is a link between these two phenomena. On the other hand, internationalisation can be either the input or the output of the relationship between NIS and national innovation capability. If a company is investing in a country because of its national innovation capacity, this can be regarded as an input to the relationship between NIS and national innovation capacity. If this company is investigating the national innovation capacity of a country then, for its internationalisation, the national innovation capacity should be important, which in turn means this company is active in innovation and innovation is also an important success factor. The interrelationship between the investment of the company and the NIS of the country (assuming that the country is competent and competitive in technology transfer) will generate and improve that country?s national innovation capacity. This is the output of internationalisation from the relationship between NIS and national innovation capacity. When companies are evaluating whether to internationalise, they investigate certain factors in the countries in which they are considering to invest. The ability to transfer technology is dependent on ability to adopt a new technology and also on the learning derived from this technology. If countries wish to attract innovation related investment they need to show their ability to have a NIS and also the capability to transfer technology. Without the technology transfer capability, the NIS is not functioning. Therefore, companies that internationalise will investigate the factors common to NIS, technology transfer, and their business needs. Through this paper we will demonstrate this link though its mechanisms. Our research will be through extensive literature review and identifying relevant aspects of previous research carried out by the authors. It will investigate certain factors of different countries that are successful in attracting innovation related foreign direct investment. Through these, we will point out the factors that are important for the link and mechanisms of NIS and national innovation capability.
Resumo:
The status of Science and Technology in KUWAIT has been analysed in order to assess the extent of the application of Science and Technology needed for the Country's development. The design and implementation of a Science and Technology Policy has been examined to identify the appropriate technology necessary to improve KUWAIT's socio-economic-industrial structures. Following a general and critical review of the role of Science and Technology in the developing countries, the author has reviewed the past and contemporary employment of Science and Technology for development.of various sectors and the existence, if any, of any form (explicit, implicit, or both) of a Science and Technology Policy in KUWAIT. The thesis is structured to evaluate almost all of the sectors in KUWAIT which utilise Science and/or Technology, the effectiveness of such practices, their policymaking process, the channels by which policies were transformed into sources of influence through Governmental action and the impact that various policy instruments at the disposal of the the Government had on the development of S & T capabilities. The author has studied the implications of the absence of a Science and Technology Policy in Kuwait by examining some specific case studies, eg, the absence of a Technology Assessment Process and the negative impacts resulting from this; the ad-hoc allocation of the research and development budget instead of its being based on a percentage of GNP; the limitations imposed on the development of indigenous contracting companies and consultancy and engineering design offices; the impacts of the absence of Technology Transfer Centre, and so forth. As a consequence of the implications of the above studies, together with the negative results from the absence of an explicit Science and Technology Policy, eg, research and development activities do not relate to the national development plans, the author suggests that a Science and Technology Policy-Making Body should be established to formulate, develop, monitor and correlate the Science and Technology Activities in KUWAIT.
Resumo:
One of the issues in the innovation system literature is examination of technological learning strategies of laggard nations. Two distinct bodies of literature have contributed to our insight into forces driving learning and innovation, National Systems of Innovation (NSI) and technological learning literature. Although both literatures yield insights on catch-up strategies of 'latecomer' nations, the explanatory powers of each literature by itself is limited. In this paper, a possible way of linking the macro- and the micro-level approaches by incorporating enterprises as active learning entities into the learning and innovation system is proposed. The proposed model has been used to develop research hypotheses and indicate research directions and is relevant for investigating the learning strategies of firms in less technologically intensive industries outside East Asia.
Resumo:
Background: Cochleostomy formation is a key stage of the cochlear implantation procedure. Minimizing the trauma sustained by the cochlea during this step is thought to be a critical feature in hearing preservation cochlear implantation. The aim of this paper is firstly, to assess the cochlea disturbances during manual and robotic cochleostomy formation. Secondly, to determine whether the use of a smart micro-drill is feasible during human cochlear implantation. Materials and methods: The disturbances within the cochlea during cochleostomy formation were analysed in a porcine specimen by creating a third window cochleostomy, preserving the underlying endosteal membrane, on the anterior aspect of the basal turn of the cochlea. A laser vibrometer was aimed at this third window, to assess its movement while a traditional cochleostomy was performed. Six cochleostomies were performed in total, three manually and three with a smart micro-drill. The mean and peak membrane movement was calculated for both manual and smart micro-drill arms, to represent the disturbances sustained within cochlea during cochleostomy formation. The smart micro-drill was further used to perform live human robotic cochleostomies on three adult patients who met the National Institute of Health and Clinical Excellence criteria for undergoing cochlear implantation. Results: In the porcine trial, the smart micro-drill preserved the endosteal membrane in all three cases. The velocity of movement of the endosteal membrane during manual cochleostomy is approximately 20 times higher on average and 100 times greater in peak velocity, than for robotic cochleostomy. The robot was safely utilized in theatre in all three cases and successfully created a bony cochleostomy while preserving the underlying endosteal membrane. Conclusions: Our experiments have revealed that controlling the force of drilling during cochleostomy formation and opening the endosteal membrane with a pick will minimize the trauma sustained by the cochlea by a factor of 20. Additionally, the smart micro-drill can safely perform a bony cochleostomy in humans under operative conditions and preserve the integrity of the underlying endosteal membrane. © W. S. Maney & Son Ltd 2013.