19 resultados para Narcotic Antagonists.

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 4th International Symposium on CGRP was expertly organized, at a difficult time, by Inger Jansen-Olesen and Lars Edvinsson and held on 28-30 September 2001 at the Royal Danish School of Pharmacy, Copenhagen, Denmark.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The SAR of Asperlicin analogues is reported, leading to bioactive 1,4-benzodiazepine-2-ones, which were prepared in a 3 step reaction sequence. The Asperlicin substructure was built up using Tryptophan and readily available 2-amino-acetophenones. This template, containing a 1,4-benzodiazepin-2-one moiety with a 3-indolmethyl side chain, was transformed into mono- and di-substituted 3-indol-3 '-yl-methyl-1,4-benzodi-azepine-2-ones by selective alkylation and acylation reactions. The SAR optimization of the 1,4-benzodiazepine scaffold has included variations at the 5-, 7-, 8-position, at the N1, N-indole nitrogen and the configuration of the C3-position. The most active Asperlicin analogue, having an IC50 of 1.6 microM on the CCKA receptor subtype, was obtained from Tryptophan in only 3 steps in an overall yield of 48%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Potency orders were determined for a series of agonists and antagonists on the calcitonin gene-related peptide (CGRP) receptor of rat L6 myocytes. The agents tested were all shown to have been active against CGRP, amylin or adrenomedullin receptors. 2. AC187 had a PIC50 Of 6.8 ± 0.10, making it 14 fold less potent as an antagonist than CGRP8-37 (PIC50, 7.95 ± 0.14). Amyline8-37 was equipotent to AC187 (PIC50, 6.6 ± 0.16) and CGRP19-37 was a fold less potent than either (pIC50 6.1 ± 0.24). 3. [Ala11]-CGRP8-37 was 6 fold less potent than CGRP8-37, (pIC50 7.13 ± 0.14), whereas [Ala18] CGRP8-37 was approximately equipotent to CGRP8-37 (pIC50, 7.52 ± 0.15). However, [Ala11,Ala18]- CGRP8-37 was over 300 fold less potent than CGRP8-37 (pIC50, 5.30 ± 0.04). 4. [Tyr0]-CGRP28-37, amylin19-37 and adrenomedullin22-52 were inactive as antagonists at concentrations of up to 1 μM. 5. Biotinyl-human α-CGRP was 150 fold less potent than human α-CGRP itself (EC50 values of 48 ± 17 nM and 0.31 ± 0.13 nM, respectively). At 1 μM, [Cys(acetomethoxy)(2'7)]-CGRP was inactive as an agonist. 6. These results confirm a role for Arg11 in maintaining the high affinity binding of CGRP8-37. Arg18 is of less direct significance for high affinity binding, but it may be important in maintaining the amphipathic nature of CGRP and its analogues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Pharmacological intervention with peripheral sympathetic transmission at ciliary smooth muscle neuro-receptor junctions has been used against a background of controlled parasympathetic activity to investigate the characteristics of autonomic control of ocular accommodation. Methods: A continuously recording infrared optometer was used to measure accommodation on a group of five visually normal emmetropic subjects under open- and closed-loop conditions. A double-blind protocol between saline, timolol and betaxolol was used to differentiate between the localised action on ciliary smooth muscle and effects induced by changes in stimulus conditions. Data were collected before and 45 min following the instillation of saline, timolol or betaxolol. Open-loop post-task decay was investigated following 3 min sustained near fixation of a stimulus placed 3 D above the subject's pre-task tonic accommodation level. Closed-loop dynamic responses were recorded for each treatment condition while subjects viewed sinusoidally (0.05-0.6 Hz) or stepwise vergence-modulated targets over a 2 D range (2-4 D). Results: Open-loop data demonstrate a rapid post-task regression to pre-task tonic accommodation levels for saline and betaxolol control conditions. A slow positive post-task shift was induced by timolol indicating that sympathetic inhibition contributes to accommodative adaptation during sustained near vision. Closed-loop accommodation responses to temporally modulated sinusoidal stimuli showed characteristic features for both saline and betaxolol control conditions. Timolol induced a reduced gain for low- and mid-temporal frequencies (< 0.3 Hz) but did not affect the response at higher temporal frequencies. Response times to stepwise stimuli increased following the instillation of timolol for the near-to-far fixation condition compared with the controls and was related to the period of sustained prior fixation. Conclusions: Modulation of accommodation under open- and closed-loop conditions by a non-selective β-blocker is consistent with the temporal and inhibitory features of sympathetic innervation to ciliary smooth muscle. Although parasympathetic innervation predominates there is evidence to support a role for sympathetic innervation in the control of ocular accommodation. © 2002 The College of Optometrists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the drug discovery process, a library of 168 multisubstituted 1,4-benzodiazepines were prepared by a 5-step solid phase combinatorial approach. Substituents were varied in the 3,5, 7 and 8-position on the benzodiazepine scaffold. The combinatorial library was evaluated in a CCK radiolabelled binding assay and CCKA (alimentary) and CCKB (brain) selective lead structures were discovered. The template of CCKA selective 1,4-benzodiazepin-2-ones bearing the tryptophan moiety was chemically modified by selective alkylation and acylation reactions. These studies provided a series of Asperlicin naturally analogues. The fully optimised Asperlicin related compound possessed a similar CCKA activity as the natural occuring compound. 3-Alkylated 1,4-benzodiazepines with selectivity towards the CCKB receptor subtype were optimised on A) the lipophilic side chain and B) the 2-aminophenyl-ketone moiety, together with some stereochemical changes. A C3 unit in the 3-position of 1,4-benzodiazepines possessed a CCKB activity within the nanomolar range. Further SAR optimisation on the N1-position by selective alkylation resulted in an improved CCKB binding with potentially decreased activity on the GABAA/benzodiazepine receptor complex. The in vivo studies revealed two N1-alkylated compounds containing unsaturated alkyl groups with anxiolytic properties. Alternative chemical approaches have been developed, including a route that is suitable for scale up of the desired target molecule in order to provide sufficient quantities for further in vivo evaluation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cholecystokinin (CCK) is a peptide hormone, present in the alimentary and the CNS. It is the most abundant peptide in the brain. CCK has been implicated in a number of disorders. The link between CCK and anxiety was the basis for this research. A comprehensive discussion on the many types of CCK receptor antagonists is included. For the drug discovery process, a number of synthetic approaches have been investigated and alternative chemical approaches developed. 1,4-Benzodiazepine analogues were prepared, with substitutents In the 1,2 & 3- position of the benzodiazepine scaffold varied, and substituted 3-anilino benzodiazepines exhibited the greatest in vitro activity towards the CCKA receptor subtype. Through extensive screening, pyrazolinone-ureido derivatives were identified, optimised, SAR studied and re-screened. A comprehensive in vivo study on the most active analogue is included, which has a number of common structural features with L-36S, 260 including activity. Pyrazolinone-amide derivatives, bearing the tryptophan moiety were equally active. A number of existing and novel furan- 2(SH)-one building blocks were prepared, from which a selected mini-library of 4- amino-substituted furan-2(SH)-ones were prepared and evaluated. All synthesised compounds were evaluated in a CCK radiolabelled binding assay (CCKA & CCKB), with compounds demonstrating receptor selectivity and lead structures being discovered. The work in this thesis has identified a number of highly active prime structures, from which further investigations are essential in providing more in vitro & in vivo data and the need to prepare more analogues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis a modified Canon IR optometer was used to record static and continuous responses of accommodation during sustained visual tasks. The instrument was assessed with regard to the ocular exit pupil used, its frequency response and noise levels. Experimental work concerned essentially the temporal characteristics and neurological basis of the accommodative mechanism. In the absence of visual stimuli, the accommodative system assumes a resting or tonic accommodative (TA) position, which may be modified by periods of sustained fixation. The rate of regression from a near task to TA in darkness has exhibited differences between regression rates for enunetropes (EMMs) compared with late-onset myopes (WMs). The rate of accommodative regression from a task set at 3D above TA was examined for a group of 10 EMMs and 10 LOMs for 3 conditions: saline, timolol and betaxolol. Timolol retarded the regression to TA for a sub-group of EMMs. The patterns of regression for the remaining emmetropes mirrored that for the LOMs, the drugs showing no difference in rate of regression compared with the saline condition. This provides support for the conjecture that LOMs and certain EMMs appear to be deficient in a sympathetic inhibitory component to the ciliary muscle which may attenuate adaptational changes in tonus and which leave them susceptible to the development of LOM. It is well established that the steady-state accommodative response is characterised by temporal changes in lens power having 2 dominant frequency components: a low frequency component (LFC: < 0.6Hz) and a high frequency component (HFC: 1.0-2.2Hz). This thesis investigates various aspects of these microfluctuations of accommodation.The HFC of accommodative fluctuations was shown to be present in central and peripheral lens zones, although the magnitude of the rms of accommodative microfluctuations was found to be reduced in the lens periphery. These findings concur with the proposal that the lens capsule acts as a force distributor, transmitting the tension from the zonules evenly over the whole of the lens surface.An investigation into the correlation between arterial pulse and the HFC of accommodative fluctuations showed that the peak frequency of the HFC was governed by the arterial pulse frequency. It was proposed that the microflucutations comprised a combination of neurological control (LFC) and physiological variations (HFC).The effect of timolol maleate on the steady-state accommodative response for a group of 10 emmetropes showed that timolol reduced significantly the rms of accommodative microfluctuations in treated but not untreated eyes. Consequently, the effect was considered to be locally, rather than systemically induced.The influence of the sympathetic system on within-task measurements of accommodation was examined by recording the accommodative response of 3 subjects to a sinusoidally moving target at 6 temporal frequencies from 0.05Hz to 0.5Hz for 3 drug conditions: saline, timolol and betaxolol. Timolol caused a reduced gain for frequencies below 0.3 whereas betaxolol reduced accommodative gain for all frequencies. It was proposed that the results for timolol were consistent with temporal response characteristics of sympathetic innervation of the ciliary muscle whereas the betaxolol results were thought to be a manifestation of fatigue resulting from the CNS depressant effect of the drug.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many cytokines have been implicated in the inflammatory pathways that characterize rheumatoid arthritis (RA) and related inflammatory diseases of the joints. These include members of the interleukin-6 (IL-6) family of cytokines, several of which have been detected in excess in the synovial fluid from RA patients. What makes the IL-6 group of cytokines a family is their common use of the glycoprotein 130 (gp130) receptor subunit, to which they bind with different affinities. Several strategies have been developed to block the pro-inflammatory activities of IL-6 subfamily cytokines. These include the application of monoclonal antibodies, the creation of mutant form(s) of the cytokine with enhanced binding affinity to gp130 receptor and the generation of antagonists by selective mutagenesis of the specific cytokine/gp130 receptor-binding site(s). The rationale for the use of anti-cytokine therapy in inflammatory joint diseases is based on evidence from studies in vitro and in vivo, which implicate major cytokines such as interleukin-1 (IL-1), tumour necrosis factor (TNF)-alpha and IL-6 in RA pathogenesis. In particular, IL-6 subfamily antagonists have a wide range of potential therapeutic and research applications. This review focuses on the role of some of the IL-6 subfamily cytokines in the pathogenesis of the inflammatory diseases of the joints (IJDs), such as RA. In addition, an overview of the recently developed antagonists will be discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human adrenomedullin (AM) is a 52-amino acid peptide belonging to the calcitonin peptide family, which also includes calcitonin gene-related peptide (CGRP) and AM2. The two AM receptors, AM(1) and AM(2), are calcitonin receptor-like receptor (CL)/receptor activity-modifying protein (RAMP) (RAMP2 and RAMP3, respectively) heterodimers. CGRP receptors comprise CL/RAMP1. The only human AM receptor antagonist (AM(22-52)) is a truncated form of AM; it has low affinity and is only weakly selective for AM(1) over AM(2) receptors. To develop novel AM receptor antagonists, we explored the importance of different regions of AM in interactions with AM(1), AM(2), and CGRP receptors. AM(22-52) was the framework for generating further AM fragments (AM(26-52) and AM(30-52)), novel AM/alphaCGRP chimeras (C1-C5 and C9), and AM/AM(2) chimeras (C6-C8). cAMP assays were used to screen the antagonists at all receptors to determine their affinity and selectivity. Circular dichroism spectroscopy was used to investigate the secondary structures of AM and its related peptides. The data indicate that the structures of AM, AM2, and alphaCGRP differ from one another. Our chimeric approach enabled the identification of two nonselective high-affinity antagonists of AM(1), AM(2), and CGRP receptors (C2 and C6), one high-affinity antagonist of AM(2) receptors (C7), and a weak antagonist selective for the CGRP receptor (C5). By use of receptor mutagenesis, we also determined that the C-terminal nine amino acids of AM seem to be responsible for its interaction with Glu74 of RAMP3. We provide new information on the structure-activity relationship of AM, alphaCGRP, and AM2 and how AM interacts with CGRP and AM(2) receptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adjuvants are substances that enhance immune responses and thus improve the efficacy of vaccination. Few adjuvants are available for use in humans, and the one that is most commonly used (alum) often induces suboptimal immunity for protection against many pathogens. There is thus an obvious need to develop new and improved adjuvants. We have therefore taken an approach to adjuvant discovery that uses in silico modeling and structure-based drug-design. As proof-of-principle we chose to target the interaction of the chemokines CCL22 and CCL17 with their receptor CCR4. CCR4 was posited as an adjuvant target based on its expression on CD4(+)CD25(+) regulatory T cells (Tregs), which negatively regulate immune responses induced by dendritic cells (DC), whereas CCL17 and CCL22 are chemotactic agents produced by DC, which are crucial in promoting contact between DC and CCR4(+) T cells. Molecules identified by virtual screening and molecular docking as CCR4 antagonists were able to block CCL22- and CCL17-mediated recruitment of human Tregs and Th2 cells. Furthermore, CCR4 antagonists enhanced DC-mediated human CD4(+) T cell proliferation in an in vitro immune response model and amplified cellular and humoral immune responses in vivo in experimental models when injected in combination with either Modified Vaccinia Ankara expressing Ag85A from Mycobacterium tuberculosis (MVA85A) or recombinant hepatitis B virus surface antigen (rHBsAg) vaccines. The significant adjuvant activity observed provides good evidence supporting our hypothesis that CCR4 is a viable target for rational adjuvant design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The receptor for calcitonin gene-related peptide (CGRP) has been the target for the development of novel small molecule antagonists for the treatment of migraine. Two such antagonists, BIBN4096BS and MK-0974, have shown great promise in clinical trials and hence a deeper understanding of the mechanism of their interaction with the receptor is now required. The structure of the CGRP receptor is unusual since it is comprised of a hetero-oligomeric complex between the calcitonin receptor-like receptor (CRL) and an accessory protein (RAMP1). Both the CLR and RAMP1 components have extracellular domains which interact with each other and together form part of the peptide-binding site. It seems likely that the antagonist binding site will also be located on the extracellular domains and indeed Trp-74 of RAMP1 has been shown to form part of the binding site for BIBN4096BS. However, despite a chimeric study demonstrating the role of the N-terminal domain of CLR in antagonist binding, no specific residues have been identified. Here we carry out a mutagenic screen of the extreme N-terminal domain of CLR (residues 23-63) and identify a mutant, Met-42-Ala, which displays 48-fold lower affinity for BIBN4096BS and almost 900-fold lower affinity for MK-0974. In addition, we confirm that the Trp-74-Lys mutation at human RAMP1 reduces BIBN4096BS affinity by over 300-fold and show for the first time a similar effect for MK-0974 affinity. The data suggest that the non-peptide antagonists occupy a binding site close to the interface of the N-terminal domains of CLR and RAMP1.