13 resultados para NYLON 6-CLAY HYBRID
em Aston University Research Archive
Resumo:
The effect of organically modified clay on the morphology, rheology and mechanical properties of high-density polyethylene (HDPE) and polyamide 6 (PA6) blends (HDPE/PA6 = 75/25 parts) is studied. Virgin and filled blends were prepared by melt compounding the constituents using a twin-screw extruder. The influence of the organoclay on the morphology of the hybrid was deeply investigated by means of wide-angle X-ray diffractometry, transmission and scanning electron microscopies and quantitative extraction experiments. It has been found that the organoclay exclusively places inside the more hydrophilic polyamide phase during the melt compounding. The extrusion process promotes the formation of highly elongated and separated organoclay-rich PA6 domains. Despite its low volume fraction, the filled minor phase eventually merges once the extruded pellets are melted again, giving rise to a co-continuous microstructure. Remarkably, such a morphology persists for long time in the melt state. A possible compatibilizing action related to the organoclay has been investigated by comparing the morphology of the hybrid blend with that of a blend compatibilized using an ethylene–acrylic acid (EAA) copolymer as a compatibilizer precursor. The former remains phase separated, indicating that the filler does not promote the enhancement of the interfacial adhesion. The macroscopic properties of the hybrid blend were interpreted in the light of its morphology. The melt state dynamics of the materials were probed by means of linear viscoelastic measurements. Many peculiar rheological features of polymer-layered silicate nanocomposites based on single polymer matrix were detected for the hybrid blend. The results have been interpreted proposing the existence of two distinct populations of dynamical species: HDPE not interacting with the filler, and a slower species, constituted by the organoclay-rich polyamide phase, which slackened dynamics stabilize the morphology in the melt state. In the solid state, both the reinforcement effect of the filler and the co-continuous microstructure promote the enhancement of the tensile modulus. Our results demonstrate that adding nanoparticles to polymer blends allows tailoring the final properties of the hybrid, potentially leading to high-performance materials which combine the advantages of polymer blends and the merits of polymer nanocomposites.
Resumo:
The reaction of [Re6Q8(OH)6]4- (Q = S, Se) with p-tertbutylpyridine (TBP) in water leads to neutral trans-[Re6Q8(TBP)4(OH)2] whose hydroxyl reactivity with carboxylic acid and TBP exchange reaction with functional pyridine have been investigated.
Resumo:
A periodic density functional theory method using the B3LYP hybrid exchange-correlation potential is applied to the Prussian blue analogue RbMn[Fe(CN)6] to evaluate the suitability of the method for studying, and predicting, the photomagnetic behavior of Prussian blue analogues and related materials. The method allows correct description of the equilibrium structures of the different electronic configurations with regard to the cell parameters and bond distances. In agreement with the experimental data, the calculations have shown that the low-temperature phase (LT; Fe(2+)(t(6)2g, S = 0)-CN-Mn(3+)(t(3)2g e(1)g, S = 2)) is the stable phase at low temperature instead of the high-temperature phase (HT; Fe(3+)(t(5)2g, S = 1/2)-CN-Mn(2+)(t(3)2g e(2)g, S = 5/2)). Additionally, the method gives an estimation for the enthalpy difference (HT LT) with a value of 143 J mol(-1) K(-1). The comparison of our calculations with experimental data from the literature and from our calorimetric and X-ray photoelectron spectroscopy measurements on the Rb0.97Mn[Fe(CN)6]0.98 x 1.03 H2O compound is analyzed, and in general, a satisfactory agreement is obtained. The method also predicts the metastable nature of the electronic configuration of the high-temperature phase, a necessary condition to photoinduce that phase at low temperatures. It gives a photoactivation energy of 2.36 eV, which is in agreement with photoinduced demagnetization produced by a green laser.
Resumo:
Polyethylene (a 1:1 blend of m-LLDPE and z-LLDPE) double layer silicate clay nanocomposites were prepared by melt extrusion using a twin screw extruder. Maleic anhydride grafted polyethylene (PEgMA) was used as a compatibiliser to enhance the dispersion of two organically modified monmorilonite clays (OMMT): Closite 15A (CL15) and nanofill SE 3000 (NF), and natural montmorillonite (NaMMT). The clay dispersion and morphology obtained in the extruded nanocomposite samples were fully characterised both after processing and during photo-oxidation by a number of complementary analytical techniques. The effects of the compatibiliser, the organoclay modifier (quartenary alkyl ammonium surfactant) and the clays on the behaviour of the nanocomposites during processing and under accelerated weathering conditions were investigated. X-ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy (SEM), rheometry and attenuated reflectance spectroscopy (ATR-FTIR) showed that the nanocomposite structure obtained is dependent on the type of clay used, the presence or absence of a compatibiliser and the environment the samples are exposed to. The results revealed that during processing PE/clay nanocomposites are formed in the presence of the compatibiliser PEgMA giving a hybrid exfoliated and intercalated structures, while microcomposites were obtained in the absence of PEgMA; the unmodified NaMMT-containing samples showed encapsulated clay structures with limited extent of dispersion in the polymer matrix. The effect of processing on the thermal stability of the OMMT-containing polymer samples was determined by measuring the additional amount of vinyl-type unsaturation formed due to a Hoffman elimination reaction that takes place in the alkyl ammonium surfactant of the modified clay at elevated temperatures. The results indicate that OMMT is responsible for the higher levels of unsaturation found in OMMT-PE samples when compared to both the polymer control and the NaMMT-PE samples and confirms the instability of the alkyl ammonium surfactant during melt processing and its deleterious effects on the durability aspects of nanocomposite products. The photostability of the PE/clay nanocomposites under accelerated weathering conditions was monitored by following changes in their infrared signatures and mechanical properties. The rate of photo-oxidation of the compatibilised PE/PEgMA/OMMT nanocomposites was much higher than that of the PE/OMMT (in absence of PEgMA) counterparts, the polymer controls and the PE–NaMMT sample. Several factors have been observed that can explain the difference in the photo-oxidative stability of the PE/clay nanocomposites including the adverse role played by the thermal decomposition products of the alkyl ammonium surfactant, the photo-instability of PEgMA, unfavourable interactions between PEgMA and products formed in the polymer as a consequence of the degradation of the surfactant on the clay, as well as a contribution from a much higher extent of exfoliated structures, determined by TEM, formed with increasing UV-exposure times.
Resumo:
We investigate the gradual changes of the microstructure of two blends of high-density polyethylene (HDPE) and polyamide 6 (PA6) at opposite composition filled with increasing amounts of an organomodified clay. The filler locates preferentially inside the polyamide phase, bringing about radical alterations in the micron-scale arrangement of the polymer phases. When the host polyamide represents the major constituent, a sudden reduction of the average sizes of the polyethylene droplets was observed upon addition of even low amounts of organoclay. A morphology refinement was also noticed at low filler contents when the particles distributes inside the minor phase. In this case, however, keep increasing the organoclay content eventually results in a high degree of PA6 phase continuity. Rheological analyses reveal that the filler loading at which the polyamide assembles in a continuous network corresponds to the critical threshold for its rheological transition from a liquid- to a gel-like behaviour, which is indicative of the structuring of the filler inside the host PA6. On the basis of this finding, a schematic mechanism is proposed in which the role of the filler in driving the space arrangement of the polymer phases is discussed. Finally, we show that the synergism between the reinforcing action of the filler and its ability to affect the blend microstructure can be exploited in order to enhance relevant technological properties of the materials, such as their high temperature structural integrity.
Resumo:
The structure and dynamics of methane in hydrated potassium montmorillonite clay have been studied under conditions encountered in sedimentary basin and compared to those of hydrated sodium montmorillonite clay using computer simulation techniques. The simulated systems contain two molecular layers of water and followed gradients of 150 barkm-1 and 30 Kkm-1 up to a maximum burial depth of 6 km. Methane particle is coordinated to about 19 oxygen atoms, with 6 of these coming from the clay surface oxygen. Potassium ions tend to move away from the center towards the clay surface, in contrast to the behavior observed with the hydrated sodium form. The clay surface affinity for methane was found to be higher in the hydrated K-form. Methane diffusion in the two-layer hydrated K-montmorillonite increases from 0.39×10-9 m2s-1 at 280 K to 3.27×10-9 m2s-1 at 460 K compared to 0.36×10-9 m2s-1 at 280 K to 4.26×10-9 m2s-1 at 460 K in Na-montmorillonite hydrate. The distributions of the potassium ions were found to vary in the hydrates when compared to those of sodium form. Water molecules were also found to be very mobile in the potassium clay hydrates compared to sodium clay hydrates. © 2004 Elsevier Inc. All All rights reserved.
Resumo:
Nonlinearity management in transmission lines with periodic dispersion compensation and hybrid Raman-Erbium doped fiber amplification is studied both analytically and numerically. Different transmission/compensating fiber pairs are considered, with particular focus on the SMF/DCF case. © 2004 Elsevier B.V. All rights reserved.
Resumo:
Computer simulation has been used to study the structure and dynamics of methane in hydrated sodium montmorillonite clays under conditions encountered in sedimentary basins. Systems containing approximately one, two, three and four molecular layers of water have followed gradients of 150 bar km-1 and 30Kkm-1, to a maximum burial depth of 6 km (900 bar and 460 K). Methane is coordinated to approximately 19 oxygen atoms, of which typically 6 are provided by the clay surface. Only in the three- and four-layer hydrates is methane able to leave the clay surface. Diffusion depends strongly on the porosity (water content) and burial depth: self-diffusion coefficients are in the range 0.12 × 10-9m2s-1 for water and 0.04 × 10−9m2s−1 < D < 8.64 × 10−9m2s−1 for methane. Bearing in mind that porosity decreases with burial depth, it is estimated that maximum diffusion occurs at around 3 km. This is in good agreement with the known location of methane reservoirs in sedimentary basins.
Resumo:
A hybrid passive-active damping solution with improved system stability margin and enhanced dynamic performance is proposed for high power grid interactive converters. In grid connected active rectifier/inverter application, line side LCL filter improves the high frequency attenuation and makes the converter compatible with the stringent grid power quality regulations. Passive damping though offers a simple and reliable solution but it reduces overall converter efficiency. Active damping solutions do not increase the system losses but can guarantee the stable operation up to a certain speed of dynamic response which is limited by the maximum bandwidth of the current controller. This paper examines this limit and introduces a concept of hybrid passive-active damping solution with improved stability margin and high dynamic performance for line side LCL filter based active rectifier/inverter applications. A detailed design, analysis of the hybrid approach and trade-off between system losses and dynamic performance in grid connected applications are reported. Simulation and experimental results from a 10 kVA prototype demonstrate the effectiveness of the proposed solution. An analytical study on system stability and dynamic response with the variations of various controller and passive filter parameters is presented.
Resumo:
The modern grid system or the smart grid is likely to be populated with multiple distributed energy sources, e.g. wind power, PV power, Plug-in Electric Vehicle (PEV). It will also include a variety of linear and nonlinear loads. The intermittent nature of renewable energies like PV, wind turbine and increased penetration of Electric Vehicle (EV) makes the stable operation of utility grid system challenging. In order to ensure a stable operation of the utility grid system and to support smart grid functionalities such as, fault ride-through, frequency response, reactive power support, and mitigation of power quality issues, an energy storage system (ESS) could play an important role. A fast acting bidirectional energy storage system which can rapidly provide and absorb power and/or VARs for a sufficient time is a potentially valuable tool to support this functionality. Battery energy storage systems (BESS) are one of a range suitable energy storage system because it can provide and absorb power for sufficient time as well as able to respond reasonably fast. Conventional BESS already exist on the grid system are made up primarily of new batteries. The cost of these batteries can be high which makes most BESS an expensive solution. In order to assist moving towards a low carbon economy and to reduce battery cost this work aims to research the opportunities for the re-use of batteries after their primary use in low and ultra-low carbon vehicles (EV/HEV) on the electricity grid system. This research aims to develop a new generation of second life battery energy storage systems (SLBESS) which could interface to the low/medium voltage network to provide necessary grid support in a reliable and in cost-effective manner. The reliability/performance of these batteries is not clear, but is almost certainly worse than a new battery. Manufacturers indicate that a mixture of gradual degradation and sudden failure are both possible and failure mechanisms are likely to be related to how hard the batteries were driven inside the vehicle. There are several figures from a number of sources including the DECC (Department of Energy and Climate Control) and Arup and Cenex reports indicate anything from 70,000 to 2.6 million electric and hybrid vehicles on the road by 2020. Once the vehicle battery has degraded to around 70-80% of its capacity it is considered to be at the end of its first life application. This leaves capacity available for a second life at a much cheaper cost than a new BESS Assuming a battery capability of around 5-18kWhr (MHEV 5kWh - BEV 18kWh battery) and approximate 10 year life span, this equates to a projection of battery storage capability available for second life of >1GWhrs by 2025. Moreover, each vehicle manufacturer has different specifications for battery chemistry, number and arrangement of battery cells, capacity, voltage, size etc. To enable research and investment in this area and to maximize the remaining life of these batteries, one of the design challenges is to combine these hybrid batteries into a grid-tie converter where their different performance characteristics, and parameter variation can be catered for and a hot swapping mechanism is available so that as a battery ends it second life, it can be replaced without affecting the overall system operation. This integration of either single types of batteries with vastly different performance capability or a hybrid battery system to a grid-tie 3 energy storage system is different to currently existing work on battery energy storage systems (BESS) which deals with a single type of battery with common characteristics. This thesis addresses and solves the power electronic design challenges in integrating second life hybrid batteries into a grid-tie energy storage unit for the first time. This study details a suitable multi-modular power electronic converter and its various switching strategies which can integrate widely different batteries to a grid-tie inverter irrespective of their characteristics, voltage levels and reliability. The proposed converter provides a high efficiency, enhanced control flexibility and has the capability to operate in different operational modes from the input to output. Designing an appropriate control system for this kind of hybrid battery storage system is also important because of the variation of battery types, differences in characteristics and different levels of degradations. This thesis proposes a generalised distributed power sharing strategy based on weighting function aims to optimally use a set of hybrid batteries according to their relative characteristics while providing the necessary grid support by distributing the power between the batteries. The strategy is adaptive in nature and varies as the individual battery characteristics change in real time as a result of degradation for example. A suitable bidirectional distributed control strategy or a module independent control technique has been developed corresponding to each mode of operation of the proposed modular converter. Stability is an important consideration in control of all power converters and as such this thesis investigates the control stability of the multi-modular converter in detailed. Many controllers use PI/PID based techniques with fixed control parameters. However, this is not found to be suitable from a stability point-of-view. Issues of control stability using this controller type under one of the operating modes has led to the development of an alternative adaptive and nonlinear Lyapunov based control for the modular power converter. Finally, a detailed simulation and experimental validation of the proposed power converter operation, power sharing strategy, proposed control structures and control stability issue have been undertaken using a grid connected laboratory based multi-modular hybrid battery energy storage system prototype. The experimental validation has demonstrated the feasibility of this new energy storage system operation for use in future grid applications.
Resumo:
A thulium-doped all-fiber laser passively mode-locked by the co-action of nonlinear polarization evolution and single-walled carbon nanotubes operating at 1860-1980 nm wavelength band is demonstrated. Pumped with the single-mode laser diode at 1.55 μm laser generates near 500-fs soliton pulses at repetition rate ranging from 6.3 to 72.5 MHz in single-pulse operation regime. Having 3-m long cavity average output power reached 300 mW, giving the peak power of 4.88 kW and the pulse energy of 2.93 nJ with slope efficiency higher than 30%. At a 21.6-m long ring cavity average output power of 117 mW is obtained, corresponding to the pulse energy up to 10.87 nJ and a pulse peak power of 21.7 kW, leading to the higher-order soliton generation.
Resumo:
This study describes an optimised modulation strategy based on switching state sequences for the hybrid-clamped multilevel converter. Two key control variables defined as 'phase shift angle' and 'switching state change' for a five-level hybrid-clamped inverter are proposed to improve all switches' operation, and by changing their values, different control methods can be obtained for modulation optimisation purposes. Two example methods can solve the voltage imbalance problem of the dc-link capacitors and furthermore avoid two switches' simultaneous switching transitions and improve the inverter's performance as compared with the traditional phase disposition pulse-width modulation strategy. A 6 kW prototype inverter is developed and a range of simulation and experiments are carried out for validation. It is found that simulation and experimental results are in a good agreement and the proposed modulation strategy is verified in terms of low-order harmonic reduction.
Resumo:
Arguably, the catalyst for the best research studies using social analysis of discourse is personal ‘lived’ experience. This is certainly the case for Kamada, who, as a white American woman with a Japanese spouse, had to deal first hand with the racialization of her son. Like many other mixed-ethnic parents, she experienced the shock and disap-pointment of finding her child being racialized as ‘Chinese’ in America through peer group taunts, and constituted as gaijin (a foreigner) in his own homeland of Japan. As a member of an e-list of the (Japan) Bilingualism Special Interest Group (BSIG), Kamada learnt that other parents from the English-speaking foreign community in Japan had similar disturbing stories to tell of their mixed-ethnic children who, upon entering the Japanese school system, were mocked, bullied and marginalized by their peers. She men-tions a pervasive Japanese proverb which warns of diversity or difference getting squashed: ‘The nail that sticks up gets hammered down’. This imperative to conform to Japanese behavioural and discursive norms prompted Kamada’s quest to investigate the impact of ‘otherization’ on the identities of children of mixed parentage. In this fascinat-ing book, she shows that this pressure to conform is balanced by a corresponding cele-bration of ‘hybrid’ or mixed identities. The children in her study are also able to negotiate their identities positively as they come to terms with contradictory discursive notions of ‘Japaneseness’, ‘whiteness’ and ‘halfness/doubleness’.The discursive construction of identity has become a central concern amongst researchers across a wide range of academic disciplines within the humanities and the social sciences, and most existing work either concentrates on a specific identity cate-gory, such as gender, sexuality or national identity, or else offers a broader discussion of how identity is theorized. Kamada’s book is refreshing because it crosses the usual boundaries and offers divergent insights on identity in a number of ways. First, using the term ‘ethno-gendering’, she examines the ways in which six mixed-ethnic girls living in Japan accomplish and manage the relationship between their gender and ethnic ‘differ-ences’ from age 12 to 15. She analyses in close detail how their actions or displays within certain situated interactions might come into conflict with how they are seen or constituted by others. Second, Kamada’s study builds on contemporary writing on the benefits of hybridity where identities are fluid, flexible and indeterminate, and which contest the usual monolithic distinctions of gender, ethnicity, class, etc. Here, Kamada carves out an original space for her findings. While scholars have often investigated changing identities and language practices of young people who have been geographi-cally displaced and are newcomers to the local language, Kamada’s participants were all born and brought up in Japan, were fluent in Japanese and were relatively proficient in English. Third, the author refuses to conceptualize or theorize identity from a single given viewpoint in preference to others, but in postmodernist spirit draws upon multiple perspectives and frameworks of discourse analysis in order to create different forms of knowledge and understandings of her subject. Drawing on this ‘multi-perspectival’ approach, Kamada examines grammatical, lexical, rhetorical and interactional features from six extensive conversations, to show how her participants position their diverse identities in relation to their friends, to the researcher and to the outside world. Kamada’s study is driven by three clear aims. The first is to find out ‘whether there are any tensions and dilemmas in the ways adolescent girls of Japanese and “white” mixed parentage in Japan identify themselves in terms of ethnicity’. In Chapter 4, she shows how the girls indeed felt that they stood out as different and consequently experienced isolation, marginalization and bullying at school – although they were able to make better sense of this as they grew older, repositioning the bullies as pitiable. The second aim is to ask how, if at all, her participants celebrate their ethnicity, and furthermore, what kind of symbolic, linguistic and social capital they were able to claim for themselves on the basis of their hybrid identities. In Chapter 5, Kamada shows how the girls over time were able to constitute themselves as insiders while constituting ‘the Japanese’ as outsiders, and their network of mixed-ethnic friends was a key means to achieve this. In Chapter 6, the author develops this potential celebration of the girls’ mixed ethnicity by investigating the privileges they perceived it afforded them – for example, having the advantage of pos-sessing English proficiency and intercultural ‘savvy’ in a globalized world. Kamada’s third aim is to ask how her participants positioned themselves and performed their hybrid identities on the basis of their constituted appearance: that is, how the girls saw them-selves based on how they looked to others. In Chapter 7, the author shows that, while there are competing discourses at work, the girls are able to take up empowering positions within a discourse of ‘foreigner attractiveness’ or ‘a white-Western female beauty’ discourse, which provides them with a certain cachet among their Japanese peers. Throughout the book, Kamada adopts a highly self-reflexive perspective of her own position as author. For example, she interrogates the fact that she may have changed the lived reality of her six participants during the course of her research study. As the six girls, who were ‘best friends’, lived in different parts of the Morita region of Japan, she had to be proactive in organizing six separate ‘get-togethers’ through the course of her three-year study. She acknowledges that she did not collect ‘naturally occurring data’ but rather co-constructed opportunities for the girls to meet and talk on a regular basis. At these meetings, she encouraged the girls to discuss matters of identity, prompted by open-ended interview questions, by stimulus materials such as photos, articles and pic-tures, and by individual tasks such as drawing self-portraits. By giving her participants a platform in this way, Kamada not only elicited some very rich spoken data but also ‘helped in some way to shape the attitudes and self-images of the girls positively, in ways that might not have developed had these get-togethers not occurred’ (p. 221). While the data she gathers are indeed rich, it may well be asked whether there is a mismatch between the girls’ frank and engaging accounts of personal experience, and the social constructionist academic register in which these are later re-articulated. When Kamada writes, ‘Rina related how within the more narrow range of discourses that she had to draw on in her past, she was disempowered and marginalized’ (p. 118), we know that Rina’s actual words were very different. Would she really recognize, understand and agree with the reported speech of the researcher? This small omission of self-reflexivity apart – an omission which is true of most lin-guistic ethnography conducted today – Kamada has written a unique, engaging and thought-provoking book which offers a model to future discourse analysts investigating hybrid identities. The idea that speakers can draw upon competing discourses or reper-toires to constitute their identities in contrasting, creative and positive ways provides linguistic researchers with a clear orientation by which to analyse the contradictions of identity construction as they occur across time in different discursive contexts