2 resultados para NUCLEATION THEORY
em Aston University Research Archive
Resumo:
More than 165 induction times of butyl paraben-ethanol solution in a batch moving fluid oscillation baffled crystallizer with various amplitudes (1-9 mm) and frequencies (1.0-9.0 Hz) have been determined to study the effect of COBR operating conditions on nucleation. The induction time decreases with increasing amplitude and frequency at power density below about 500 W/m3; however, a further increase of the frequency and amplitude leads to an increase of the induction time. The interfacial energies and pre-exponential factors in both homogeneous and heterogeneous nucleation are determined by classical nucleation theory at oscillatory frequency 2.0 Hz and amplitudes of 3 or 5 mm both with and without net flow. To capture the shear rate conditions in oscillatory flow crystallizers, a large eddy simulation approach in a computational fluid dynamics framework is applied. Under ideal conditions the shear rate distribution shows spatial and temporal periodicity and radial symmetry. The spatial distributions of the shear rate indicate an increase of average and maximum values of the shear rate with increasing amplitude and frequency. In continuous operation, net flow enhances the shear rate at most time points, promoting nucleation. The mechanism of the shear rate influence on nucleation is discussed.
Resumo:
The use of human mesenchymal stem cells (hMSCs) in regenerative medicine is a potential major advance for the treatment of many medical conditions, especially with the use of allogeneic therapies where the cells from a single donor can be used to treat ailments in many patients. Such cells must be grown attached to surfaces and for large scale production, it is shown that stirred bioreactors containing ~200 μm particles (microcarriers) can provide such a surface. It is also shown that the just suspended condition, agitator speed NJS, provides a satisfactory condition for cell growth by minimizing the specific energy dissipation rate, εT, in the bioreactor whilst still meeting the oxygen demand of the cells. For the cells to be used for therapeutic purposes, they must be detached from the microcarriers before being cryopreserved. A strategy based on a short period (~7 min) of very high εT, based on theories of secondary nucleation, is effective at removing >99% cells. Once removed, the cells are smaller than the Kolmogorov scale of turbulence and hence not damaged. This approach is shown to be successful for culture and detachment in 4 types of stirred bioreactors from 15 mL to 5 L.