17 resultados para NO CO REACTION SYSTEM

em Aston University Research Archive


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objective: To introduce a new technique for co-registration of Magnetoencephalography (MEG) with magnetic resonance imaging (MRI). We compare the accuracy of a new bite-bar with fixed fiducials to a previous technique whereby fiducial coils were attached proximal to landmarks on the skull. Methods: A bite-bar with fixed fiducial coils is used to determine the position of the head in the MEG co-ordinate system. Co-registration is performed by a surface-matching technique. The advantage of fixing the coils is that the co-ordinate system is not based upon arbitrary and operator dependent fiducial points that are attached to landmarks (e.g. nasion and the preauricular points), but rather on those that are permanently fixed in relation to the skull. Results: As a consequence of minimizing coil movement during digitization, errors in localization of the coils are significantly reduced, as shown by a randomization test. Displacement of the bite-bar caused by removal and repositioning between MEG recordings is minimal (∼0.5 mm), and dipole localization accuracy of a somatosensory mapping paradigm shows a repeatability of ∼5 mm. The overall accuracy of the new procedure is greatly improved compared to the previous technique. Conclusions: The test-retest reliability and accuracy of target localization with the new design is superior to techniques that incorporate anatomical-based fiducial points or coils placed on the circumference of the head. © 2003 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The objective of this work was to design, construct and commission a new ablative pyrolysis reactor and a high efficiency product collection system. The reactor was to have a nominal throughput of 10 kg/11r of dry biomass and be inherently scalable up to an industrial scale application of 10 tones/hr. The whole process consists of a bladed ablative pyrolysis reactor, two high efficiency cyclones for char removal and a disk and doughnut quench column combined with a wet walled electrostatic precipitator, which is directly mounted on top, for liquids collection. In order to aid design and scale-up calculations, detailed mathematical modelling was undertaken of the reaction system enabling sizes, efficiencies and operating conditions to be determined. Specifically, a modular approach was taken due to the iterative nature of some of the design methodologies, with the output from one module being the input to the next. Separate modules were developed for the determination of the biomass ablation rate, specification of the reactor capacity, cyclone design, quench column design and electrostatic precipitator design. These models enabled a rigorous design protocol to be developed capable of specifying the required reactor and product collection system size for specified biomass throughputs, operating conditions and collection efficiencies. The reactor proved capable of generating an ablation rate of 0.63 mm/s for pine wood at a temperature of 525 'DC with a relative velocity between the heated surface and reacting biomass particle of 12.1 m/s. The reactor achieved a maximum throughput of 2.3 kg/hr, which was the maximum the biomass feeder could supply. The reactor is capable of being operated at a far higher throughput but this would require a new feeder and drive motor to be purchased. Modelling showed that the reactor is capable of achieving a reactor throughput of approximately 30 kg/hr. This is an area that should be considered for the future as the reactor is currently operating well below its theoretical maximum. Calculations show that the current product collection system could operate efficiently up to a maximum feed rate of 10 kg/Fir, provided the inert gas supply was adjusted accordingly to keep the vapour residence time in the electrostatic precipitator above one second. Operation above 10 kg/hr would require some modifications to the product collection system. Eight experimental runs were documented and considered successful, more were attempted but due to equipment failure had to be abandoned. This does not detract from the fact that the reactor and product collection system design was extremely efficient. The maximum total liquid yield was 64.9 % liquid yields on a dry wood fed basis. It is considered that the liquid yield would have been higher had there been sufficient development time to overcome certain operational difficulties and if longer operating runs had been attempted to offset product losses occurring due to the difficulties in collecting all available product from a large scale collection unit. The liquids collection system was highly efficient and modeling determined a liquid collection efficiency of above 99% on a mass basis. This was validated due to the fact that a dry ice/acetone condenser and a cotton wool filter downstream of the collection unit enabled mass measurements of the amount of condensable product exiting the product collection unit. This showed that the collection efficiency was in excess of 99% on a mass basis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tissue engineering of skin based on collagen:PCL biocomposites using a designed co-culture system is reported. The collagen:PCL biocomposites having collagen:PCL (w/w) ratios of 1:4, 1:8, and 1:20 have been proven to be biocompatible materials to support both adult normal human epidermal Keratinocyte (NHEK) and mouse 3T3 fibroblast growth in cell culture, respectively, by Dai, Coombes, et al. in 2004. Films of collagen:PCL biocomposites were prepared using non-crosslinking method by impregnation of lyophilized collagen mats with PCL/dichloromethane solutions followed by solvent evaporation. To mimic the dermal/epidermal structure of skin, the 1:20 collagen:PCL biocomposites were selected for a feasibility study of a designed co-culture technique that would subsequently be used for preparing fibroblast/biocomposite/keratinocyte skin models. A 55.3% increase in cell number was measured in the designed co-culture system when fibroblasts were seeded on both sides of a biocomposite film compared with cell culture on one surface of the biocomposite in the feasibility study. The co-culture of human keratinocytes and 3T3 fibroblasts on each side of the membrane was therefore studied using the same co-culture system by growing keratinocytes on the top surface of membrane for 3 days and 3T3 fibroblasts underneath the membrane for 6 days. Scanning electron microscopy (SEM) and immunohistochemistry assay revealed good cell attachment and proliferation of both human keratinocytes and 3T3 fibroblasts with these two types of cells isolated well on each side of the membrane. Using a modified co-culture technique, a co-cultured skin model presenting a confluent epidermal sheet on one side of the biocomposite film and fibroblasts populated on the other side of the film was developed successfully in co-culture system for 28 days under investigations by SEM and immunohistochemistry assay. Thus, the design of a co-culture system based on 1:20 (w/w) collagen:PCL biocomposite membranes for preparation of a bi-layered skin model with differentiated epidermal sheet was proven in principle. The approach to skin modeling reported here may find application in tissue engineering and screening of new pharmaceuticals. © 2005 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aims of this work have been to identify an enzymatic reaction system suitable to investigate and develop the high-speed centrifuge as a novel reaction system for performing such reactions. The production of galacto-oligosaccharides by the trans-galactosyl activity of the enzyme β-galactosidase on lactose monohydrate was identified as a model enzymatic system to elucidate the principles of this type of process. Galacto-oligosaccharides have attracted considerable commercial interest as food additives which have been shown to be beneficial to the health of the human gastrointestinal tract. The development of a single unit operation capable of controlling the biosynthesis of galacto-oligosaccharides whilst simultaneously separating the enzyme from the reaction products would reduce downstream processing costs. This thesis shows for the first time that by using a combination of (a) immobilised or insolubilised β-galactosidase , (b) a rate-zonal centrifugation technique, and (c) various applied centrifugal fields, that a high-speed centrifuge could be used to control the formation of galacto-oligosaccharides whilst removing the enzyme from the reaction products. By layering a suspension of insolubilised β-galactosidase on top of a lactose monohydrate density gradient and centrifuging, the applied centrifugal fields generated produced sedimentation of the enzyme particles through the substrate. The higher sedimentation rate of the enzyme compared to those of the reaction products allowed for separation to take place. Complete sedimentation, or pelleting of the enzyme permits the possible recovery and re-use. Insolubilisation of the enzyme allowed it to be sedimented through the substrate gradient using much lower applied centrifugal fields than that required to sediment free soluble enzyme and this allowed for less expensive centrifugation equipment to be used. Using free soluble and insolubilised β-galactosidase stirred-batch reactions were performed to investigate the kinetics of lactose monohydrate hydrolysis and galacto-oligosaccharide formation. Based on these results a preliminary mathematical model based on Michaelis-Menten kinetics was produced. It was found that the enzyme insolubilisation process using a chemical cross-linking agent did not affect the process of galacto-oligosaccharide formation. Centrifugation experiments were performed and it was found that by varying the applied centrifugal fields that the yield of galacto-oligosaccharides could be controlled. The higher the applied centrifugal fields the lower the yield of galacto-oligosaccharides. By increasing the applied centrifugal fields the 'contact time' between the sedimenting enzyme and the substrate was reduced, which produced lower yields. A novel technique involving pulsing the insolubilised enzyme through the substrate gradient was developed and this was found to produce higher yields of galacto-oligosaccharide compared to using a single enzyme loading equivalent to the total combined activity of the pulses. Comparison of the galacto-oligosaccharide yields between stirred-batch and centrifugation reactions showed that the applied centrifugal fields did not adversely affect the transgalactosyl activity of the insolubilised enzyme.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electrospinng of a fibrous triblock copolymer consisting of poly(methyl methacrylate-block-poly[2-(diethylamino) ethyl methacrylate]-block-poly(methyl methacrylate) (PMMA-b-PDEA-b-PMMA) has been discussed. A mixed co-solvent system of tetrahydrofuran (THF) and dimethylformamide (DMF) was used to electrospin fibrous PMMA-b-PDEA-b-PMMA and its influence on surface morphology and diameter of the electrospun fiber was also investigated in an attempt to control the fiber diameter. The concentration range between 20 and 40 wt % was found suitable for electrospinning of PMMA-b-PDEA-b-PMMA in a THF/DMF system. It was also observed that the average fiber diameter decreased as the content of DMF was increased. A significant decrease in fiber diameter was observed when moving from a THF solution to a THF/DMF system at a ratio of 70:30.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of zirconium phosphate supported WOx solid acid catalysts with W loadings from 1–25 wt% have been prepared on high surface area zirconium phosphate by a surface grafting method. Catalysts were characterized by N2 adsorption, FTIR, Raman, UV-Vis, 31P MAS NMR, pyridine TPD and X-ray methods. Spectroscopic measurements suggest a Keggin-type structure forms on the surface of zirconium phosphate as a ([triple bond, length as m-dash]ZrOH2+)(ZrPW11O405−) species. All catalysts show high activity in palmitic acid esterification with methanol. These materials can be readily separated from the reaction system for re-use, and are resistant to leaching of the active heteropolyacid, suggesting potential industrial applications in biodiesel synthesis. © The Royal Society of Chemistry 2006.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Angiotensin converting enzyme (ACE) inhibitors lisinopril and ramipril were selected from EMA/480197/2010 and the potassium-sparing diuretic spironolactone was selected from the NHS specials list for November 2011 drug tariff with the view to produce oral liquid formulations providing dosage forms targeting paediatrics. Lisinopril, ramipril and spironolactone were chosen for their interaction with transporter proteins in the small intestine. Formulation limitations such as poor solubility or pH sensitivity needed consideration. Lisinopril was formulated without extensive development as drug and excipients were water soluble. Ramipril and spironolactone are both insoluble in water and strategies combating this were employed. Ramipril was successfully solubilised using low concentrations of acetic acid in a co-solvent system and also via complexation with hydroxypropyl-β-cyclodextrin. A ramipril suspension was produced to take formulation development in a third direction. Spironolactone dosages were too high for solubilisation techniques to be effective so suspensions were developed. A buffer controlled pH for the sensitive drug whilst a precisely balanced surfactant and suspending agent mix provided excellent physical stability. Characterisation, stability profiling and permeability assessment were performed following formulation development. The formulation process highlighted current shortcomings in techniques for taste assessment of pharmaceutical preparations resulting in early stage research into a novel in vitro cell based assay. The formulations developed in the initial phase of the research were used as model formulations investigating microarray application in an in vitro-in vivo correlation for carrier mediated drug absorption. Caco-2 cells were assessed following transport studies for changes in genetic expression of the ATP-binding cassette and solute carrier transporter superfamilies. Findings of which were compared to in vitro and in vivo permeability findings. It was not possible to ascertain a correlation between in vivo drug absorption and the expression of individual genes or even gene families, however there was a correlation (R2 = 0.9934) between the total number of genes with significantly changed expression levels and the predicted human absorption.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a study of the influence of dispersion induced phase noise for CO-OFDM systems using FFT multiplexing/IFFT demultiplexing techniques (software based). The software based system provides a method for a rigorous evaluation of the phase noise variance caused by Common Phase Error (CPE) and Inter-Carrier Interference (ICI) including - for the first time to our knowledge - in explicit form the effect of equalization enhanced phase noise (EEPN). This, in turns, leads to an analytic BER specification. Numerical results focus on a CO-OFDM system with 10-25 GS/s QPSK channel modulation. A worst case constellation configuration is identified for the phase noise influence and the resulting BER is compared to the BER of a conventional single channel QPSK system with the same capacity as the CO-OFDM implementation. Results are evaluated as a function of transmission distance. For both types of systems, the phase noise variance increases significantly with increasing transmission distance. For a total capacity of 400 (1000) Gbit/s, the transmission distance to have the BER < 10-2 for the worst case CO-OFDM design is less than 800 and 460 km, respectively, whereas for a single channel QPSK system it is less than 1400 and 560 km.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polymer beads have attracted considerable interest for use in catalysis, drug delivery, and photo­nics due to their particular shape and surface morphology. Electrospinning, typically used for producing nanofibers, can also be used to fabricate polymer beads if the solution has a sufficiently low concentration. In this work, a novel approach for producing more uniform, intact beads is presented by electrospinning self-assembled block copolymer (BCP) solutions. This approach allows a relatively high polymer concentration to be used, yet with a low degree of entanglement between polymer chains due to microphase separation of the BCP in a selective solvent system. Herein, to demonstrate the technology, a well-studied polystyrene-poly(ethylene butylene)–polystyrene triblock copolymer is dissolved in a co-solvent system. The effect of solvent composition on the characteristics of the fibers and beads is intensively studied, and the mechanism of this fiber-to-bead is found to be dependent on microphase separation of the BCP.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One major drawback of coherent optical orthogonal frequency-division multiplexing (CO-OFDM) that hitherto remains unsolved is its vulnerability to nonlinear fiber effects due to its high peak-to-average power ratio. Several digital signal processing techniques have been investigated for the compensation of fiber nonlinearities, e.g., digital back-propagation, nonlinear pre- and post-compensation and nonlinear equalizers (NLEs) based on the inverse Volterra-series transfer function (IVSTF). Alternatively, nonlinearities can be mitigated using nonlinear decision classifiers such as artificial neural networks (ANNs) based on a multilayer perceptron. In this paper, ANN-NLE is presented for a 16QAM CO-OFDM system. The capability of the proposed approach to compensate the fiber nonlinearities is numerically demonstrated for up to 100-Gb/s and over 1000km and compared to the benchmark IVSTF-NLE. Results show that in terms of Q-factor, for 100-Gb/s at 1000km of transmission, ANN-NLE outperforms linear equalization and IVSTF-NLE by 3.2dB and 1dB, respectively.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Secondary pyrolysis in fluidized bed fast pyrolysis of biomass is the focus of this work. A novel computational fluid dynamics (CFD) model coupled with a comprehensive chemistry scheme (134 species and 4169 reactions, in CHEMKIN format) has been developed to investigate this complex phenomenon. Previous results from a transient three-dimensional model of primary pyrolysis were used for the source terms of primary products in this model. A parametric study of reaction atmospheres (H2O, N2, H2, CO2, CO) has been performed. For the N2 and H2O atmosphere, results of the model compared favorably to experimentally obtained yields after the temperature was adjusted to a value higher than that used in experiments. One notable deviation versus experiments is pyrolytic water yield and yield of higher hydrocarbons. The model suggests a not overly strong impact of the reaction atmosphere. However, both chemical and physical effects were observed. Most notably, effects could be seen on the yield of various compounds, temperature profile throughout the reactor system, residence time, radical concentration, and turbulent intensity. At the investigated temperature (873 K), turbulent intensity appeared to have the strongest influence on liquid yield. With the aid of acceleration techniques, most importantly dimension reduction, chemistry agglomeration, and in-situ tabulation, a converged solution could be obtained within a reasonable time (∼30 h). As such, a new potentially useful method has been suggested for numerical analysis of fast pyrolysis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, a co-operative distributed process mining system (CDPMS) is developed to streamline the workflow along the supply chain in order to offer shorter delivery times, more flexibility and higher customer satisfaction with learning ability. The proposed system is equipped with the ‘distributed process mining’ feature which is used to discover the hidden relationships among each working decision in distributed manner. This method incorporates the concept of data mining and knowledge refinement into decision making process for ensuring ‘doing the right things’ within the workflow. An example of implementation is given, based on the case of slider manufacturer.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aims/hypothesis - Loss of the trophic support provided by surrounding non-endocrine pancreatic cell populations underlies the decline in beta cell mass and insulin secretory function observed in human islets following isolation and culture. This study sought to determine whether restoration of regulatory influences mediated by ductal epithelial cells promotes sustained beta cell function in vitro. Methods - Human islets were isolated according to existing protocols. Ductal epithelial cells were harvested from the exocrine tissue remaining after islet isolation, expanded in monolayer culture and characterised using fluorescence immunocytochemistry. The two cell types were co-cultured under conventional static culture conditions or within a rotational cell culture system. The effect of co-culture on islet structural integrity, beta cell mass and insulin secretory capacity was observed for 10 days following isolation. Results - Human islets maintained under conventional culture conditions exhibited a characteristic loss in structural integrity and functional viability as indicated by a diminution of glucose responsiveness. By contrast, co-culture of islets with ductal epithelial cells led to preserved islet morphology and sustained beta cell function, most evident in co-cultures held within the rotational cell culture system, which showed a significantly (p<0.05) greater insulin secretory response to elevated glucose compared with control islets. Similarly, insulin/protein ratio data suggested that the presence of ductal epithelial cells is beneficial for the maintenance of beta cell mass. Conclusions/interpretation - The data indicate a supportive role for ductal epithelial cells in islet viability. Further characterisation of the regulatory influences may lead to novel strategies to improve long-term beta cell function both in vitro and following islet transplantation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Astrocytes are essential for neuronal function and survival, so both cell types were included in a human neurotoxicity test-system to assess the protective effects of astrocytes on neurons, compared with a culture of neurons alone. The human NT2.D1 cell line was differentiated to form either a co-culture of post-mitotic NT2.N neuronal (TUJ1, NF68 and NSE positive) and NT2.A astrocytic (GFAP positive) cells (∼2:1 NT2.A:NT2.N), or an NT2.N mono-culture. Cultures were exposed to human toxins, for 4 h at sub-cytotoxic concentrations, in order to compare levels of compromised cell function and thus evidence of an astrocytic protective effect. Functional endpoints examined included assays for cellular energy (ATP) and glutathione (GSH) levels, generation of hydrogen peroxide (H2O2) and caspase-3 activation. Generally, the NT2.N/A co-culture was more resistant to toxicity, maintaining superior ATP and GSH levels and sustaining smaller significant increases in H2O2 levels compared with neurons alone. However, the pure neuronal culture showed a significantly lower level of caspase activation. These data suggest that besides their support for neurons through maintenance of ATP and GSH and control of H2O2 levels, following exposure to some substances, astrocytes may promote an apoptotic mode of cell death. Thus, it appears the use of astrocytes in an in vitro predictive neurotoxicity test-system may be more relevant to human CNS structure and function than neuronal cells alone. © 2007 Elsevier Ltd. All rights reserved.