17 resultados para NICKEL PHOSPHATE VSB-5
em Aston University Research Archive
Resumo:
The yeast gene fab1 and its mammalian orthologue Pip5k3 encode the phosphatidylinositol 3-phosphate [PtdIns(3)P] 5-kinases Fab1p and PIKfyve, respectively, enzymes that generates phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P(2)]. A shared feature of fab1Delta yeast cells and mammalian cells overexpressing a kinase-dead PIKfyve mutant is the formation of a swollen vacuolar phenotype: a phenotype that is suggestive of a conserved function for these enzymes and their product, PtdIns(3,5)P(2), in the regulation of endomembrane homeostasis. In the current study, fixed and live cell imaging has established that, when overexpressed at low levels in HeLa cells, PIKfyve is predominantly associated with dynamic tubular and vesicular elements of the early endosomal compartment. Moreover, through the use of small interfering RNA, it has been shown that suppression of PIKfyve induces the formation of swollen endosomal structures that maintain their early and late endosomal identity. Although internalisation, recycling and degradative sorting of receptors for epidermal growth factor and transferrin was unperturbed in PIKfyve suppressed cells, a clear defect in endosome to trans-Golgi-network (TGN) retrograde traffic was observed. These data argue that PIKfyve is predominantly associated with the early endosome, from where it regulates retrograde membrane trafficking to the TGN. It follows that the swollen endosomal phenotype observed in PIKfyve-suppressed cells results primarily from a reduction in retrograde membrane fission rather than a defect in multivesicular body biogenesis.
Resumo:
[3H]Inositol hexakisphosphate (InsP6) binds with a heterogeneous distribution to frozen sections of unfixed rat brain and is displaced by unlabelled InsP6. The pattern of binding correlates with binding to neuronal cell bodies. [3H]InsP6 binding to cerebellar membranes has been further characterised, is reversible, and saturable, and exhibits high specificity for inositol polyphosphates. The IC50 for competition by unlabelled InsP6 is approximately 100nM, whereas inositol 1,3,4,5,6 pentakisphosphate (Ins(13456)P5), inositol 1,3,4,5 tetrakisphosphate (Ins(1345)P4), and inositol 1,4,5 trisphosphate (Ins(145)P3) bind with an affinity at least one order of magnitude lower. [3H]InsP6 binding is clearly distinct from previously characterised Ins(145)P3 (ref. 1, 2) and Ins(1345)P4 (ref. 3) binding, both in terms of pharmacology and brain distribution.
Resumo:
DOCK180 is the archetype of the DOCK180-family guanine nucleotide exchange factor for small GTPases Rac1 and Cdc42. DOCK180-family proteins share two conserved domains, called DOCK homology region (DHR)-1 and -2. Although the function of DHR2 is to activate Rac1, DHR1 is required for binding to phosphoinositides. To better understand the function of DHR1, we searched for its binding partners by direct nanoflow liquid chromatography/tandem mass spectrometry, and we identified sorting nexins (SNX) 1, 2, 5, and 6, which make up a multimeric protein complex mediating endosome-to-trans-Golgi-network (TGN) retrograde transport of the cation-independent mannose 6-phosphate receptor (CI-MPR). Among these SNX proteins, SNX5 was coimmunoprecipitated with DOCK180 most efficiently. In agreement with this observation, DOCK180 colocalized with SNX5 at endosomes. The RNA interference-mediated knockdowns of SNX5 and DOCK180, but not Rac1, resulted in the redistribution of CI-MPR from TGN to endosomes. Furthermore, expression of the DOCK180 DHR1 domain was sufficient to restore the perturbed CI-MPR distribution in DOCK180 knockdown cells. These data suggest that DOCK180 regulates CI-MPR trafficking via SNX5 and that this function is independent of its guanine nucleotide exchange factor activity toward Rac1.
Resumo:
Epidemiological studies previously identified cis-5,8,11,14,17-eicosapentaenoic acid (EPA) as the biologically active component of fish oil of benefit to the cardiovascular system. Although clinical investigations demonstrated its usefulness in surgical procedures, its mechanism of action still remained unclear. It was shown in this thesis, that EPA partially blocked the contraction of aortic smooth muscle cells to the vasoactive agents KCl and noradrenaline. The latter effect was likely caused by reducing calcium influx through receptor-operated channels, supporting a recent suggestion by Asano et al (1997). Consistently, EPA decreased noradrenaline-induced contractures in aortic tissue, in support of previous reports (Engler, 1992b). The observed effect of EPA on cell contractions to KCl was not simple due to blocking calcium influx through L-type channels, consistent with a previous suggestion by Hallaq et al (1992). Moreover, EPA caused a transient increase in [Ca2+]i in the absence of extracellular calcium. To resolve this it was shown that EPA increased inositol phosphate formation which, it is suggested, caused the release of calcium from an inositol phosphate-dependent internal binding site, possibly that of an intracellular membrane or superficial sarcoplasmic reticulum, producing the transient increase in [Ca2+]i. As it was shown that the cellular contractile filaments were not desensitised to calcium by EPA, it is suggested that the transient increase in [Ca2+]i subsequently blocks further cell contraction to KCl by activating membrane-associated potassium channels. Activation of potassium channels induces the cellular efflux of potassium ions, thereby hyperpolarising the plasma membrane and moving the membrane potential farther from the activation range for calcium channels. This would prevent calcium influx in the longer term and could explain the initial observed effect of EPA to block cell contraction to KCl.
Resumo:
The 5-HT3 receptors are members of the cys-loop family of ligand-gated ion channels. Two functional subtypes are known, the homomeric 5HT3A and the heteromeric 5HT3A/B receptors, which exhibit distinct biophysical characteristics but are difficult to differentiate pharmacologically. Atomic force microscopy has been used to determine the stoichiometry and architecture of the heteromeric 5HT3A/B receptor. Each subunit was engineered to express a unique C-terminal epitope tag, together with six sequential histidine residues to facilitate nickel affinity purification. The 5-HT3 receptors, ectopically expressed in HEK293 cells, were solubilised, purified and decorated with antibodies to the subunit specific epitope tags. Imaging of individual receptors by atomic force microscopy revealed a pentameric arrangement of subunits in the order BBABA, reading anti-clockwise when viewed from the extracellular face. Homology models for the heteromeric receptor were then constructed using both the electron microscopic structure of the nicotinic acetylcholine receptor, from Torpedo marmorata, and the X-ray crystallographic structure of the soluble acetylcholine binding protein, from Lymnaea stagnalis, as templates. These homology models were used, together with equivalent models constructed for the homomeric receptor, to interpret mutagenesis experiments designed to explore the minimal recognition differences of both the natural agonist, 5-HT, and the competitive antagonist, granisetron, for the two human receptor subtypes. The results of this work revealed that the 5-HT3B subunit residues within the ligand binding site, for both the agonist and antagonist, are accommodating to conservative mutations. They are consistent with the view that the 5-HT3A subunit provides the principal and the 5-HT38 subunit the complementary recognition interactions at the binding interface.
Resumo:
Molecular dynamics (MD) has been used to identify the relative distribution of dysprosium in the phosphate glass DyAl0.30P3.05O9.62. The MD model has been compared directly with experimental data obtained from neutron diffraction to enable a detailed comparison beyond the total structure factor level. The MD simulation gives Dy ... Dy correlations at 3.80(5) and 6.40(5) angstrom with relative coordination numbers of 0.8(1) and 7.3(5), thus providing evidence of minority rare-earth clustering within these glasses. The nearest neighbour Dy-O peak occurs at 2.30 angstrom with each Dy atom having on average 5.8 nearest neighbour oxygen atoms. The MD simulation is consistent with the phosphate network model based on interlinked PO4 tetrahedra where the addition of network modifiers Dy3+ depolymerizes the phosphate network through the breakage of P-(O)-P bonds whilst leaving the tetrahedral units intact. The role of aluminium within the network has been taken into explicit account, and A1 is found to be predominantly (78 tetrahedrally coordinated. In fact all four A1 bonds are found to be to P (via an oxygen atom) with negligible amounts of Al-O-Dy bonds present. This provides an important insight into the role of Al additives in improving the mechanical properties of these glasses.
Resumo:
The role of the Sm3+ ions in the structure of vitreous Sm2O3•4P2O5 has been investigated using the neutron diffraction anomalous dispersion technique, which employs the wavelength dependence of the real and imaginary parts of the neutron scattering length close to an absorption resonance. The data described here represent the first successful complete neutron anomalous dispersion study on an amorphous material. This experimental methodology permits one to determine exclusively the closest Sm• •• Sm separation. Knowledge of the R•••R (R = rare-earth) pairwise correlation is key to understanding the optical and magnetic properties of rare-earth phosphate glasses. The anomalous difference correlation function, ΔT''(r), shows a dominant feature pertaining to a Sm•••Sm separation, centred at 4.8 Å. The substantial width and marked asymmetry of this peak indicates that the minimum approach of Sm3+ ions could be as close as 4 Å. Information on other pairwise correlations is also revealed via analysis of T (r) and ΔT (r) correlation functions: Sm3+ ions display an average co-ordination number, n Sm(O), of 7, with a mean Sm–O bond length of 2.375(5) Å whilst the PO4 tetrahedra have a mean P–O bond length of 1.538(2) Å. Second- and third-neighbour correlations are also identified. These results corroborate previous findings. Such consistency lends support to the application of the anomalous dispersion technique to determine separations.
Resumo:
Neutron diffraction was used to measure the structure of the phosphate glasses RAl0.30P3.05O9.62, where R denotes Dy or Ho, and RAl0.34P3.20O10.04, where R denotes La or Ce. For each glass, isomorphic structures were assumed and difference function methods were employed to separate, essentially, those correlations involving the rare-earth ion, R3+, from the remainder. The ratio of bridging oxygen, OB, to terminal oxygen, OT, atoms in the PO4 tetrahedra was quantified and in both materials R3+ and Al3+ are found to act as network modifying cations which bind to the OT. The R–OT coordination number is 6.7(1) and 7.5(2) for the Dy/Ho and La/Ce glasses respectively.
Resumo:
Measurement of the coating fracture strain of an aluminide coating on a single crystal nickel base superalloy has been performed both in three-point bending and using variable wall thickness testpieces. As-aged specimens, 28 to 33 μm in thickness, were tested at room temperature, 600, 700 and 750 °C; specimens pre-exposed for 140 h at 850 and 1100 °C in air and vacuum were tested at room temperature. Fracture strains varied from 0.52 to 0.70% for as-aged specimens tested at temperatures up to 700 °C and specimens exposed at 850 °C and tested at room temperature. The crack path for these conditions was intergranular or transgranular in the main coating, along carbide-matrix interfaces in the coating transition zone, and at an angle of 30-45° to the original crack path in the substrate. The as-aged coating tested at 750 °C was ductile; a ductile-brittle transition occurs between 700 and 750 °C for the strain rate used (1 × 10-5 s-1). Following 1100 °C pre-exposure, specimens were ductile at room temperature with fractures strains of several percent. In this condition the crack morphology changed to one of subsurface nucleation in β grains and at β-γ′ interfaces. © 1993.
Resumo:
Fatigue thresholds and slow crack growth rates have been measured in a powder formed nickel-base superalloy from room temperature to 600°C. Two grain sizes were investigated: 5-12 μm and 50 μm. It is shown that the threshold increases with grain size, and the difference is most pronounced at room temperature. Although crack growth rates increase with temperature in both microstructures, the threshold is only temperature dependent in the material with the larger grain size. It is also only in the latter that the room temperature threshold falls when the load ratio is increased from 0.1 to 0.5. At 600°C the higher load ratio causes a 20% reduction in the threshold irrespective of grain size. The results are discussed in terms of surface roughness and oxide-induced crack closure, the former being critically related to the type of crystallographic crack growth, which is in turn shown to be both temperature and stress intensity dependent. © 1983.
Resumo:
A simple and efficient route to prepare supported nanocrystalline oxides is presented. The synthesis procedure, i.e. in situ autocombustion of a glycine complex, allows the production of nanocrystals in a porous matrix presenting larger pore size. An example of successful formation of 2-5 nm nanocrystals is given for a single oxide (Fe2O3), a mixed-oxide structure (LaCoO3 perovskite-type) and a nickel-doped oxide. © 2011 The Royal Society of Chemistry.
Resumo:
The relative distribution of rare-earth ions R3+ (Dy3+ or Ho3+) in the phosphate glass RAl0.30P3.05O9.62 was measured by employing the method of isomorphic substitution in neutron diffraction and, by taking the role of Al into explicit account, a self-consistent model of the glass structure was developed. The glass network is found to be made from corner sharing PO4 tetrahedra in which there are, on average, 2.32(9) terminal oxygen atoms, OT, at 1.50(1) Å and 1.68(9) bridging oxygen atoms, OB, at 1.60(1) Å. The network modifying R3+ ions bind to an average of 6.7(1) OT and are distributed such that 7.9(7) R–R nearest neighbours reside at 5.62(6) Å. The Al3+ ion also has a network modifying role in which it helps to strengthen the glass through the formation of OT–Al–OT linkages. The connectivity of the R-centred coordination polyhedra in (M2O3)x(P2O5)1−x glasses, where M3+ denotes a network modifying cation (R3+ or Al3+), is quantified in terms of a parameter fs. Methods for reducing the clustering of rare-earth ions in these materials are then discussed, based on a reduction of fs via the replacement of R3+ by Al3+ at fixed total modifier content or via a change of x to increase the number of OT available per network modifying M3+ cation.
Resumo:
Neutron diffraction was used to measure the total structure factors for several rare-earth ion R3+ (La3+ or Ce3+) phosphate glasses with composition close to RAl0.35P3.24O10.12. By assuming isomorphic structures, difference function methods were employed to separate, essentially, those correlations involving R3+ from the remainder. A self-consistent model of the glass structure was thereby developed in which the Al correlations were taken into explicit account. The glass network was found to be made from interlinked PO4 tetrahedra having 2.2(1) terminal oxygen atoms, OT, at 1.51(1) Angstrom, and 1.8(1) bridging oxygen atoms, OB, at 1.60(1) Angstrom. Rare-earth cations bonded to an average of 7.5(2) OT nearest neighbors in a broad and asymmetric distribution. The Al3+ ion acted as a network modifier and formed OT-A1-OT linkages that helped strengthen the glass. The connectivity of the R-centered coordination polyhedra was quantified in terms of a parameter f(s) and used to develop a model for the dependence on composition of the A1-OT coordination number in R-A1-P-O glasses. By using recent 17 A1 nuclear-magnetic-resonance data, it was shown that this connectivity decreases monotonically with increasing Al content. The chemical durability of the glasses appeared to be at a maximum when the connectivity of the R-centered coordination polyhedra was at a minimum. The relation of f(s) to the glass transition temperature, Tg, was discussed.
Resumo:
The relative distribution of rare-earth ions R3+ (Dy3+ or Ho3+) in the phosphate glass RAl0.30P3.05O9.62 was measured by employing the method of isomorphic substitution in neutron diffraction. It is found that 7.9(7) R-R nearest neighbors reside at 5.62(6) Angstrom in a network made from interlinked PO4 tetrahedra. Provided that the role of Al is explicitly considered, a self-consistent account of the local matrix atom correlations can be developed in which there are 1.68(9) bridging and 2.32(9) terminal oxygen atoms per phosphorus.