8 resultados para NI-CU ALLOYS

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fatigue crack propagation and threshold data for two Ni-base alloys, Astroloy and Nimonic 901, are reported. At room temperature the effect which altering the load ratio (R-ratio) has on fatigue behaviour is strongly dependent on grain size. In the coarse grained microstructures crack growth rates increase and threshold values decrease markedly as R rises from 0. 1 to 0. 8, whereas only small changes in behaviour occur in fine grained material. In Astroloy, when strength level and gamma grain size are kept constant, there is very little effect of processing route and gamma prime distribution on room temperature threshold and crack propagation results. The dominant microstructural effect on this type of fatigue behaviour is the matrix ( gamma ) grain size itself.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper provides a description of the features and mechanisms of facetted short crack growth in Ni-base superalloys, and briefly reviews existing short crack growth models in terms of their application to Ni-base alloys. The concept of “soft barriers” is introduced to produce a new two-phase model for local microstructural effects on short crack growth in Waspaloy. This is derived from detailed observations of crack growth through individual grains. The model differs from all previous approaches in highlighting the importance of crack path perturbations within grains. Potential applications of the model in alloy development are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Full text: With the rapid development of the aerospace industry, manufacturing technologies have to continuously develop and adjust themselves to ever-growing demands coming from more complex component designs and the use of highly engineered materials. Today there is an increased number of manufacturers contributing to the realization of final products, i.e. avionics, so it is easy to perceive the truly globalized dimension of the aerospace manufacturing business. With this comes the demand for further engineering developments on which the academic/industrial research institutes need to deliver solutions to real aerospace manufacturing problems. This is a challenging task since aerospace manufacturing technologies have to cover a wide range of materials (from composites to advanced Ni/Ti alloys), processes (from forging to non-traditional machining and assembly), and parts’ dimensions/batch sizes (from airframes to turbine blades). In this wide context, this Special Issue includes high quality theoretical and experimental scientific contributions on the following topics related to the aerospace manufacturing technology: (a) machining of advance aerospace alloys; (b) abrasive processes applied to aerospace components; (c) surface treatments to enhance fatigue performance of aerospace components; (d) joining and assembly of aerospace components; (e) laser machining of aerospace alloys; (f) automated/supervised manufacture of aerospace components; (g) quality supervision of aerospace manufacturing routes. The breadth of topics in this Special Issue is perhaps indicative of the complexity and challenges that the research related to aerospace manufacturing technology can offer. We hope that this issue will act as a catalyst for the development of further research, academic and industrial interactions, and publications related to aerospace manufacturing technologies for the benefit of the academic and industrial research communities.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The ability of Cu and Sn to promote the performance of a 20% Ni/Al2O3 catalyst in the deoxygenation of lipids to fuel-like hydrocarbons was investigated using model triglyceride and fatty acid feeds, as well as algal lipids. In the semi-batch deoxygenation of tristearin at 260 °C a pronounced promotional effect was observed, a 20% Ni-5% Cu/Al2O3 catalyst affording both higher conversion (97%) and selectivity to C10-C17 alkanes (99%) in comparison with unpromoted 20% Ni/Al2O3 (27% conversion and 87% selectivity to C10-C17). In the same reaction at 350 °C, a 20% Ni-1% Sn/Al2O3 catalyst afforded the best results, giving yields of C10-C17 and C17 of 97% and 55%, respectively, which contrasts with the corresponding values of 87 and 21% obtained over 20% Ni/Al2O3. Equally encouraging results were obtained in the semi-batch deoxygenation of stearic acid at 300 °C, in which the 20% Ni-5% Cu/Al2O3 catalyst afforded the highest yields of C10-C17 and C17. Experiments were also conducted at 260 °C in a fixed bed reactor using triolein − a model unsaturated triglyceride − as the feed. While both 20% Ni/Al2O3 and 20% Ni-5% Cu/Al2O3 achieved quantitative yields of diesel-like hydrocarbons at all reaction times sampled, the Cu-promoted catalyst exhibited higher selectivity to longer chain hydrocarbons, a phenomenon which was also observed in experiments involving algal lipids as the feed. Characterization of fresh and spent catalysts indicates that Cu enhances the reducibility of Ni and suppresses both cracking reactions and coke-induced deactivation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two zinc-based alloys of high aluminium content, Super Cosmal alloy containing 60% Al, 6% Si, 1% Cu, 0.3% Mn and HAZCA alloy containing 60% Al, 8% Si, 2% Cu, 0.06% Mg were produced by sand casting. Foundry characteristics in particular, fluidity, mode of solidification and feeding ability were examined. Metallographic analysis of structures was carried out using optical and scanning electron microscopy and their mechanical properties were determined using standard techniques. Dry wear characteristics were determined using a pin-on-disc test, and boundary-lubricated wear was studied using full bearing tests. Results from casting experiments were evaluated and compared with the behaviour of a standard ZA-27 alloy and those from tribological tests with both ZA-27 alloy and a leaded tin-bronze (SAE660) under the same testing conditions. The presence of silicon was beneficial, reducing the temperature range of solidification, improving feeding efficiency and reducing gravity segregation of phases. Use of chills and melt degassing was found necessary to achieve soundness and enhanced mechanical properties. Dry wear tests were performed against a steel counterface for sliding speeds of 0.25, 0.5, 1.0 and 2 m/s and for a range of loads up to 15 kgf. The high aluminium alloys showed wear rates as low as those of ZA-27 at speeds of 0.25 and 0.5 m/s for the whole range of applied loads. ZA-27 performed better at higher speeds. The build up of a surface film on the wearing surface of the test pins was found to be responsible for the mild type of wear of the zinc based alloys. The constitution of the surface film was determined as a complex mixture of aluminium, zinc and iron oxides and metallic elements derived from both sliding materials. For full bearing tests, bushes were machined from sand cast bars and were tested against a steel shaft in the presence of a light spindle oil as the lubricant. Results showed that all zinc based alloys run-in more rapidly than bronze, and that wear in Super Cosmal and HAZCA alloys after prolonged running were similar to those in ZA-27 bearings and significantly smaller than those of the bronze.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The precipitation reactions occurring in a series of copper-based alloys selected from the system copper-chromium-zirconium have been studied by resistometric and metallographic techniques. A survey of the factors influencing the development of copper-based alloys for high strength, high conductivity applications is followed by a more general review of contemporary materials, and illustrates that the most promising alloys are those containing chromium and zirconium. The few systematic attempts to study alloys from this system have been collated, discussed, and used as a basis for the selection of four alloy compositions viz:- Cu - 0.4% Cr Cu - 0.24. Zr Cu - 0. 3% Cr - 0.1% Zr Cu - 0.2% Cr - 0.2% Zr A description of the experimental techniques used to study the precipitation behaviour of these materials is preceeded by a discussion of the currently accepted theories relating to precipitate nucleation and growth. The experimental results are presented and discussed for each of the alloys independently, and are then treated jointly to obtain an overall assessment of the way in which the precipitation kinetics, metallography and mechanical properties vary with alloy composition and heat treatment. The metastable solid solution of copper-chromium is found to decompose by the rejection of chromium particles which maintain a coherent interface and a Kurdjumov-Sachs type crystallographic orientation relationship with the copper matrix. The addition of 0.1% zirconium to the alloy retards the rate of transformation by a factor of ten and modifies the dispersion characteristics of the precipitate without markedly altering the morphology. Further additions of zirconium lead to the growth of stacking faults during ageing, which provide favourable nucleation sites for the chromium precipitate. The partial dislocations bounding such stacking faults are also found to provide mobile heterogeneous nucleation sources for the precipitation reactions occurring in copper-zirconium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have used a high-energy ball mill to prepare single-phased nanocrystalline Fe, Fe90Ni10, Fe85Al4Si11, Ni99Fe1 and Ni90Fe10 powders. We then increased their grain sizes by annealing. We found that a low-temperature anneal (T < 0.4 Tm) softens the elemental nanocrystalline Fe but hardens both the body-centered cubic iron- and face-centered cubic nickel-based solid solutions, leading in these alloys to an inverse Hall–Petch relationship. We explain this abnormal Hall–Petch effect in terms of solute segregation to the grain boundaries of the nanocrystalline alloys. Our analysis can also explain the inverse Hall–Petch relationship found in previous studies during the thermal anneal of ball-milled nanocrystalline Fe (containing ∼1.5 at.% impurities) and electrodeposited nanocrystalline Ni (containing ∼1.0 at.% impurities).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper compares the crack growth resistance of an experimental spray-formed extrusion with that of a commercial aluminium alloy, the two alloys having similar compositions but markedly different grain structures. Tensile and fracture behaviour is similar in both materials and is influenced by inclusion content. The two materials differ in their crack growth resistance, which is shown to be dependent upon grain size and shape. Environmentally-induced crack growth is favoured by aligned grain boundaries and small grain size.