4 resultados para NEPHROLOGY

em Aston University Research Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background. Diabetic nephropathy is the leading cause of end-stage kidney failure worldwide. It is characterized by excessive extracellular matrix accumulation. Transforming growth factor beta 1 (TGF-ß1) is a fibrogenic cytokine playing a major role in the healing process and scarring by regulating extracellular matrix turnover, cell proliferation and epithelial mesanchymal transdifferentiation. Newly synthesized TGF-ß is released as a latent, biologically inactive complex. The cross-linking of the large latent TGF-ß to the extracellular matrix by transglutaminase 2 (TG2) is one of the key mechanisms of recruitment and activation of this cytokine. TG2 is an enzyme catalyzing an acyl transfer reaction leading to the formation of a stable e(?-glutamyl)-lysine cross-link between peptides.Methods. To investigate if changes in TG activity can modulate TGF-ß1 activation, we used the mink lung cell bioassay to assess TGF-ß activity in the streptozotocin model of diabetic nephropathy treated with TG inhibitor NTU281 and in TG2 overexpressing opossum kidney (OK) proximal tubular epithelial cells.Results. Application of the site-directed TG inhibitor NTU281 caused a 25% reduction in kidney levels of active TGF-ß1. Specific upregulation of TG2 in OK proximal tubular epithelial cells increased latent TGF-ß recruitment and activation by 20.7% and 19.7%, respectively, in co-cultures with latent TGF-ß binding protein producing fibroblasts.Conclusions. Regulation of TG2 directly influences the level of active TGF-ß1, and thus, TG inhibition may exert a renoprotective effect by targeting not only a direct extracellular matrix deposition but also TGF-ß1 activation and recruitment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Progressive tissue fibrosis is involved in debilitating diseases that affect organs including the lungs, liver, heart, skin, and kidneys. Recent evidence suggests that tissue transglutaminase, an enzyme that crosslinks proteins, may be involved in tissue fibrosis by crosslinking and stabilizing the extracellular matrix or by recruiting and activating the large latent transforming growth factor (TGF)-β1 complex. We treated rats that had undergone 5/6-nephrectomy with two different irreversible inhibitors of transglutaminase and found that both prevented a decline in kidney function and reduced the development of glomerulosclerosis and tubulointerstitial fibrosis by up to 77% and 92%, respectively. Treatment reduced the accumulation of collagen I and collagen III, with the primary mechanism of action being direct interference with the crosslinking of extracellular matrix rather than altered regulation of TGFβ1. We conclude that inhibition of transglutaminase offers a potential therapeutic option for chronic kidney disease and other conditions that result from tissue fibrosis. Copyright © 2007 by the American Society of Nephrology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cardiac remodelling occurs in response to stress, such as chronic hypertension or myocardial infarction, and forms the substrate for subsequent development of heart failure. Key pathophysiological features include ventricular hypertrophy, interstitial fibrosis, contractile dysfunction, and chamber dilatation. Although the molecular mechanisms are complex and not fully defined, substantial evidence now implicates increased oxidative stress as being important. The NADPH oxidase ('Nox') enzymes are a particularly important source of reactive oxygen species that are implicated in redox signalling. This article reviews the evidence for an involvement of NADPH oxidases in different aspects of adverse cardiac remodelling. A better understanding of the roles of this complex enzyme family may define novel therapeutic targets for the prevention of heart failure. Copyright © 2007 S. Karger AG.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACT. Experimental renal scarring indicates that tissue transglutaminase (tTg) may be associated with the accumulation of extracellular matrix (ECM), both indirectly via TGF-β1 activation and directly by the formation of ε(γ-glutamyl) lysine dipeptide bonds within the ECM. The latter potentially accelerates deposition and confers the ECM with resistance to proteolytic digestion. Studied were 136 human renal biopsy samples from a range of chronic renal diseases (CRD) to determine changes in tTg and ε(γ-glutamyl) lysine crosslinking. Immunofluorescence for insoluble tTg showed a 14-fold increase in the kidneys of CRD patients (5.3 ± 0.5 versus 76 ± 54 mV/cm2), which was shown to be active by a similar 11-fold increase in the ε(γ-glutamyl) lysine crosslink (1.8 ± 0.2 versus 19.3 ± 14.2 mV/cm2). Correlations were obtained with renal function for tTg and crosslink. In situ hybridization for tTg mRNA showed that tubular epithelial cells were the major source of tTg; however, both mesangial and interstitial cells also contributed to elevated levels in CRD. This mRNA pattern was consistent with immunohistochemistry for soluble tTg. Changes in renal tTg and its product, the ε(γ-glutamyl) lysine crosslink, occur in progressive renal scarring in humans independently of the original etiology and in a similar manner to experimental models. tTg may therefore play a role in the pathogenesis of renal scarring and fibrosis in patients with CRD and can therefore be considered a potential therapeutic target. E-mail: T.Johnson@sheffield.ac.uk