8 resultados para N-BUTANE
em Aston University Research Archive
Resumo:
A series of novel polymeric compounds of formula [M(btzb)3][ClO4]2 (Mll = Fe, Ni or Cu) with btzb = 1,4-bis-(tetrazol-1-yl)butane have been prepared and their physical properties investigated. The btzb ligand has been prepared and its crystal structure determined, together with a tentative crystal structure of the 3-D compound [Fe(btzb)3][ClO4]2. The model of the latter shows two symmetry-related, interpenetrating Fe-btzb networks in which the iron(II) ions approach each other as close as 8.3 and 9.1 Å. This supramolecular catenane undergoes a sharp thermal spin transition around 160 K with hysteresis (20 K) along with a pronounced thermochromic effect. The spin crossover behaviour has been followed by magnetic, DSC, optical spectroscopy and 57Fe Mössbauer spectroscopy measurements. Irradiation with green light at low temperature leads to population of the metastable high-spin state for the thermally active iron(ll) ions. The nature of the spin crossover behaviour has been discussed in detail.
Resumo:
[μ-Tris(1,4-bis(tetrazol-1-yl)butane-N4,N4‘)iron(II)] bis(hexafluorophosphate), [Fe(btzb)3](PF6)2, crystallizes in a three-dimensional 3-fold interlocked structure featuring a sharp two-step spin-crossover behavior. The spin conversion takes place between 164 and 182 K showing a discontinuity at about T1/2 = 174 K and a hysteresis of about 4 K between T1/2 and the low-spin state. The spin transition has been independently followed by magnetic susceptibility measurements, 57Fe-Mössbauer spectroscopy, and variable temperature far and midrange FTIR spectroscopy. The title compound crystallizes in the trigonal space group P30¯(No. 147) with a unit cell content of one formula unit plus a small amount of disordered solvent. The lattice parameters were determined by X-ray diffraction at several temperatures between 100 and 300 K. Complete crystal structures were resolved for 9 of these temperatures between 100 (only low spin, LS) and 300 K (only high spin, HS), Z = 1 [Fe(btzb)3](PF 6)2: 300 K (HS), a = 11.258(6) Å, c = 8.948(6) Å, V = 982.2(10) Å3; 100 K (LS), a = 10.989(3) Å, c = 8.702(2) Å, V = 910.1(4) Å3. The molecular structure consists of octahedral coordinated iron(II) centers bridged by six N4,N4‘ coordinating bis(tetrazole) ligands to form three 3-dimensional networks. Each of these three networks is symmetry related and interpenetrates each other within a unit cell to form the interlocked structure. The Fe−N bond lengths change between 1.993(1) Å at 100 K in the LS state and 2.193(2) Å at 300 K in the HS state. The nearest Fe separation is along the c-axis and identical with the lattice parameter c.
Resumo:
A series of surface plasmonic fibre devices were fabricated using multiple coatings deposited on a lapped section of a single mode fibre. Coupling from the guided mode to surface plasmons was promoted following UV laser irradiation of the coated region through a phase mask, which generated a surface relief grating structure. The devices showed high spectral sensitivities and strong coupling for low refractive indices as compared to other grating-type fibre devices. The plasmonic devices were used to detect the variation in the refractive indices of alkane gases with measured wavelength and coupling sensitivity to index of 3400 nm RIU-1 and 8300 dB RIU-1, respectively. As a demonstration of the performance of these gas sensors, a minimum concentration of 2% by volume of butane in ethane was achieved.
Resumo:
A recent method for phase equilibria, the AGAPE method, has been used to predict activity coefficients and excess Gibbs energy for binary mixtures with good accuracy. The theory, based on a generalised London potential (GLP), accounts for intermolecular attractive forces. Unlike existing prediction methods, for example UNIFAC, the AGAPE method uses only information derived from accessible experimental data and molecular information for pure components. Presently, the AGAPE method has some limitations, namely that the mixtures must consist of small, non-polar compounds with no hydrogen bonding, at low moderate pressures and at conditions below the critical conditions of the components. Distinction between vapour-liquid equilibria and gas-liquid solubility is rather arbitrary and it seems reasonable to extend these ideas to solubility. The AGAPE model uses a molecular lattice-based mixing rule. By judicious use of computer programs a methodology was created to examine a body of experimental gas-liquid solubility data for gases such as carbon dioxide, propane, n-butane or sulphur hexafluoride which all have critical temperatures a little above 298 K dissolved in benzene, cyclo-hexane and methanol. Within this methodology the value of the GLP as an ab initio combining rule for such solutes in very dilute solutions in a variety of liquids has been tested. Using the GLP as a mixing rule involves the computation of rotationally averaged interactions between the constituent atoms, and new calculations have had to be made to discover the magnitude of the unlike pair interactions. These numbers have been seen as significant in their own right in the context of the behaviour of infinitely-dilute solutions. A method for extending this treatment to "permanent" gases has also been developed. The findings from the GLP method and from the more general AGAPE approach have been examined in the context of other models for gas-liquid solubility, both "classical" and contemporary, in particular those derived from equations-of-state methods and from reference solvent methods.
Resumo:
The identification and quantification of spin adducts and their reduction products (>NOH, >NOR) formed from nitroso compounds and nitrones in EPR and PP during spin trapping techniques have been examined. The nitroxyl yield and polymer bound nitroxyl percentage formed from these spin traps were found to be strongly dependent on the nature of spin trap and radical generator, processing temperature, and irradiation time. The nitroxyl yield and % bound nitroxyl of the spin traps improved significantly in the presence of Trigonox 101 and 2-0H benzophenone. The effect of these spin traps used as normal additive and their spin adducts in the form of EPR-masterbatch on the photo and thermal-oxidation of PP have been studied. Aliphatic nitroso compounds were found to have much better photo-antioxidant activity than nitrones and aromatic nitroso compounds, and their antioxidant activity improved appreciably in the presence of, a free radical generator, Trigonox 101, before and after extraction. The effect of heat, light and oxidising agent (meta-dichloro per benzoic acid) on the nitroxyl yield of nitroso tertiary butane in solution as a model study has been investigated and a cyclic regenerative process involving both chain breaking acceptor and chain breaking donor process has been proposed.
Resumo:
The enzyme catalysed polytransesterification of diesters with diols was investigated under various conditions. The most consistent results were obtained using crude porcine pancreatic lipase (PPL) suspended in anhydrous diethyl ether. Addition of molecular sieve to the above system gave higher molecular weight products. The PPL catalysed reaction of bis(2,2,2-trichlorethyl) adipate and glutarate with butane-1,4-diol in anhydrous ether with and without molecular sieve was investigated over a range of times from 8 to 240 hours. The 72 hour adipate reaction with molecular sieve gave the highest molecular weight polymer (Mn 6,500 and Mw 9,400). The glutarate gave the maximum molecular weight polyester after 24 hours (Mn 5,700 and Mw 9,500). Occasionally the glutarate reaction produced very high molecular weight polyester-enzyme complexes. Toluene generally gave lower molecular weight products than diethyl ether. Dichloromethane and tetrahydrofuran gave mainly dimers and trimers. Alternative enzyme and diol systems were also investigated. These yielded no polymeric products. The molecular weights of the polyesters were determined by 1H NMR end-group analysis and by GPC. The molecular weights determined by NMR were on average about twice as great as those determined by GPC. The synthesis of the following diesters is described: i)Bis(2,2,2-trichloroethyl) succinate, glutarate, adipate, trans-3-hexenedioate, and trans-3,4-epoxyadipate. ii) Diphenyl glutarate and adipate.iii)Bis(2,2,2-fluoroethyl) glutarate and trans-3-hexendioate.iv) Divinyl glutarate. v) N,N'Glutaryl dicyclohexanone oxime.The polytransesterification of all the above esters with diols was investigated. The easily synthesised bis(2,2,2-trichloroethyl) glutarate and adipate gave the best results and the work was concentrated on these two esters.
Resumo:
This research was undertaken to: develop a process for the direct solvent extraction of castor oil seeds. A literature survey confirmed the desirability of establishing such a process with emphasis on the decortication, size, reduction, detoxification-deallergenization, and solvent·extraction operations. A novel process was developed for the dehulling of castor seeds which consists of pressurizing the beans and then suddenly releasing the pressure to vaccum. The degree of dehulling varied according to the pressure applied and the size of the beans. Some of the batches were difficult-to-hull, and this phenomenon was investigated using the scanning electron microscope and by thickness and compressive strength measurements. The other variables studied to lesser degrees included residence time, moisture, content, and temperature.The method was successfully extended to cocoa beans, and (with modifications) to peanuts. The possibility of continuous operation was looked into, and a mechanism was suggested to explain the method works. The work on toxins and allergens included an extensive literature survey on the properties of these substances and the methods developed for their deactivation Part of the work involved setting up an assay method for measuring their concentration in the beans and cake, but technical difficulties prevented the completion of this aspect of the project. An appraisal of the existing deactivation methods was made in the course of searching for new ones. A new method of reducing the size of oilseeds was introduced in this research; it involved freezing the beans in cardice and milling them in a coffee grinder, the method was found to be a quick, efficient, and reliable. An application of the freezing technique was successful in dehulling soybeans and de-skinning peanut kernels. The literature on the solvent extraction, of oilseeds, especially castor, was reviewed: The survey covered processes, equipment, solvents, and mechanism of leaching. three solvents were experimentally investigated: cyclohexane, ethanol, and acetone. Extraction with liquid ammonia and liquid butane was not effective under the conditions studied. Based on the results of the research a process has been suggested for the direct solvent extraction of castor seeds, the various sections of the process have analysed, and the factors affecting the economics of the process were discussed.
Resumo:
The structures of linear chain Fe(II) spin-crossover compounds of α,β- and α,ω-bis (tetrazol-1-yl)alkane type ligands are described in relation to their magnetic properties. The first threefold interlocked 3-D catenane Fe(II) spin-transition system, [μ-tris(1,4-bis(tetrazol-1-yl)butane-N1,N1′) iron(II)] bis(perchlorate), will be discussed. An analysis is made among the structures and the cooperativity of the spin-crossover behaviour of polynuclear Fe(II) spin-transition materials.