18 resultados para Myocardial Sympathetic Innervation
em Aston University Research Archive
Resumo:
Purpose: Evidence exists for an additional inhibitory accommodative control system mediated by the sympathetic branch of the autonomic nervous system (ANS). This work aims to show the relative prevalence of sympathetic inhibition in young emmetropic and myopic adults, and to evaluate the effect of sympathetic facility on accommodative and oculomotor function. Methods: Profiling of ciliary muscle innervation was carried out in 58 young adult subjects (30 emmetropes, 14 early onset myopes, 14 late onset myopes) by examining post-task open-loop accommodation responses, recorded continuously by a modified open-view infrared optometer. Measurements of amplitude of accommodation, tonic accommodation, accommodative lag at near, AC/A ratio, and heterophoria at distance and near were made to establish a profile of oculomotor function. Results: Evidence of sympathetic inhibitory facility in ciliary smooth muscle was observed in 27% of emmetropes, 21% of early-onset myopes and 29% of late-onset myopes. Twenty-six percent of all subjects demonstrated access to sympathetic facility. Closed-loop oculomotor function did not differ significantly between subjects with sympathetic facility, and those with sympathetic deficit. Conclusions: Emmetropic and myopic groups cannot be distinguished in terms of the relative proportions having access to sympathetic inhibition. Presence of sympathetic innervation does not have a significant effect on accommodative function under closed-loop viewing conditions. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
Autonomic innervation of ciliary smooth muscle is mediated principally by the parasympathetic nervous system and is supplemented by the sympathetic nervous system. Previous drug and nerve stimulation experiments on humans and animals have demonstrated that sympathetic innervation is inhibitory (via β-2 adrenoceptors), relatively small, slow and augmented by concurrent levels of background parasympathetic activity. These characteristics are pertinent to the sympathetic system having a specific role in our ability to adapt successfully to sustained near vision tasks and, given the clear association between near vision and the onset and development of myopia, to a putative aetiological role in myopia development in pre-disposed individuals. A fifth characteristic, namely the variation between individuals in access to an inhibitory sympathetic facility is therefore of particular interest. A novel method for continuous recording of accommodation, currently employed in a large sample longitudinal study of myopia in young adults, was used following topical instillation of non-selective (timolol) and selective (betaxolol) sympathetic β-adrenoceptor antagonists. Measures of post-task accommodative hysteresis were taken with reference to the time-course of regression of accommodation when open-loop (Difference of Gaussian) conditions were immediately imposed following short (10 s) and long (3 min) duration far (0D) and near (3D above tonic level) tasks viewed through a Badal system. Data confirm earlier informal experimental observations that only one in three individuals are likely to have access to a sympathetic inhibitory facility during sustained near vision. © 2002 The College of Optometrists.
Resumo:
Purpose: Pharmacological intervention with peripheral sympathetic transmission at ciliary smooth muscle neuro-receptor junctions has been used against a background of controlled parasympathetic activity to investigate the characteristics of autonomic control of ocular accommodation. Methods: A continuously recording infrared optometer was used to measure accommodation on a group of five visually normal emmetropic subjects under open- and closed-loop conditions. A double-blind protocol between saline, timolol and betaxolol was used to differentiate between the localised action on ciliary smooth muscle and effects induced by changes in stimulus conditions. Data were collected before and 45 min following the instillation of saline, timolol or betaxolol. Open-loop post-task decay was investigated following 3 min sustained near fixation of a stimulus placed 3 D above the subject's pre-task tonic accommodation level. Closed-loop dynamic responses were recorded for each treatment condition while subjects viewed sinusoidally (0.05-0.6 Hz) or stepwise vergence-modulated targets over a 2 D range (2-4 D). Results: Open-loop data demonstrate a rapid post-task regression to pre-task tonic accommodation levels for saline and betaxolol control conditions. A slow positive post-task shift was induced by timolol indicating that sympathetic inhibition contributes to accommodative adaptation during sustained near vision. Closed-loop accommodation responses to temporally modulated sinusoidal stimuli showed characteristic features for both saline and betaxolol control conditions. Timolol induced a reduced gain for low- and mid-temporal frequencies (< 0.3 Hz) but did not affect the response at higher temporal frequencies. Response times to stepwise stimuli increased following the instillation of timolol for the near-to-far fixation condition compared with the controls and was related to the period of sustained prior fixation. Conclusions: Modulation of accommodation under open- and closed-loop conditions by a non-selective β-blocker is consistent with the temporal and inhibitory features of sympathetic innervation to ciliary smooth muscle. Although parasympathetic innervation predominates there is evidence to support a role for sympathetic innervation in the control of ocular accommodation. © 2002 The College of Optometrists.
Resumo:
The principal work reported in this thesis is the examination of autonomic profile of ciliary muscle innervation as a risk factor in myopia development. Deficiency in sympathetic inhibitory control of accommodation has been proposed as a contributory factor in the development of late onset myopia (LOM). Complementary measurements of ocular biometry, oculomotor function and dynamic accommodation response were carried out on the same subject cohort, thus allowing cross-correlation of these factors with. autonomic profile. Subjects were undergraduate and postgraduate students of Aston University. A 2.5 year longitudinal study of refractive error progression in 40 subjects revealed the onset of LOM in 10, initially emmetropic, young adult subjects (age range 18-24 years) undertaking substantial amounts of near work. A controlled, double blind experimental protocol was conducted concurrently to measure post-task open-loop accommodative regression following distance (0 D) or near (3 D above baseline tonic accommodation) closed-loop tasks of short (10 second) or long (3 minute) duration. Closed-loop tasks consisted of observation of a high contrast Maltese cross target; open-loop conditions were imposed by observation of a 0.2 c/deg Difference of Gaussian target. Accommodation responses were recorded continuously at 42 Hz using a modified Shin-Nippon SRW-5000 open-view infra-red optometer. Blockade of the sympathetic branch of accommodative control was achieved by topical instillation of the non-selective b-adrenoceptor antagonist timolol maleate. Betaxolol hydrochloride (non-selective b1-adrenoceptor antagonist) and normal saline were employed as control agents. Retarded open-loop accommodative regression under b2 blockade following the 3 minute near task indicated the presence of sympathetic facility. Sympathetic inhibitory facility in accommodation control was found in similar proportions between LOM and stable emmetropic subjects. A cross-sectional study (N=60) of autonomic profile showed that sympathetic innervation of ciliary muscle is present in similar proportions between emmetropes, early-, and late-onset myopes. Sympathetic facility was identified in 27% of emmetropes, 21% of EOMs and 29% of LOMs.
Resumo:
In this thesis a modified Canon IR optometer was used to record static and continuous responses of accommodation during sustained visual tasks. The instrument was assessed with regard to the ocular exit pupil used, its frequency response and noise levels. Experimental work concerned essentially the temporal characteristics and neurological basis of the accommodative mechanism. In the absence of visual stimuli, the accommodative system assumes a resting or tonic accommodative (TA) position, which may be modified by periods of sustained fixation. The rate of regression from a near task to TA in darkness has exhibited differences between regression rates for enunetropes (EMMs) compared with late-onset myopes (WMs). The rate of accommodative regression from a task set at 3D above TA was examined for a group of 10 EMMs and 10 LOMs for 3 conditions: saline, timolol and betaxolol. Timolol retarded the regression to TA for a sub-group of EMMs. The patterns of regression for the remaining emmetropes mirrored that for the LOMs, the drugs showing no difference in rate of regression compared with the saline condition. This provides support for the conjecture that LOMs and certain EMMs appear to be deficient in a sympathetic inhibitory component to the ciliary muscle which may attenuate adaptational changes in tonus and which leave them susceptible to the development of LOM. It is well established that the steady-state accommodative response is characterised by temporal changes in lens power having 2 dominant frequency components: a low frequency component (LFC: < 0.6Hz) and a high frequency component (HFC: 1.0-2.2Hz). This thesis investigates various aspects of these microfluctuations of accommodation.The HFC of accommodative fluctuations was shown to be present in central and peripheral lens zones, although the magnitude of the rms of accommodative microfluctuations was found to be reduced in the lens periphery. These findings concur with the proposal that the lens capsule acts as a force distributor, transmitting the tension from the zonules evenly over the whole of the lens surface.An investigation into the correlation between arterial pulse and the HFC of accommodative fluctuations showed that the peak frequency of the HFC was governed by the arterial pulse frequency. It was proposed that the microflucutations comprised a combination of neurological control (LFC) and physiological variations (HFC).The effect of timolol maleate on the steady-state accommodative response for a group of 10 emmetropes showed that timolol reduced significantly the rms of accommodative microfluctuations in treated but not untreated eyes. Consequently, the effect was considered to be locally, rather than systemically induced.The influence of the sympathetic system on within-task measurements of accommodation was examined by recording the accommodative response of 3 subjects to a sinusoidally moving target at 6 temporal frequencies from 0.05Hz to 0.5Hz for 3 drug conditions: saline, timolol and betaxolol. Timolol caused a reduced gain for frequencies below 0.3 whereas betaxolol reduced accommodative gain for all frequencies. It was proposed that the results for timolol were consistent with temporal response characteristics of sympathetic innervation of the ciliary muscle whereas the betaxolol results were thought to be a manifestation of fatigue resulting from the CNS depressant effect of the drug.
Resumo:
PURPOSE. The purposes of the present study were to assess the effect of a sympathetic inhibitory pharmacologic agent, timolol maleate, on the magnitude of nearwork-induced transient myopia (NITM) and its decay in different refractive groups for an extended near task duration and to determine the proportion of the young adult population manifesting effective sympathetic access under naturalistic closed-loop viewing conditions. METHODS. Ten subjects with emmetropia and 10 with myopia were tested. They read binocularly for 1 hour at a distance of 35 to 40 cm. NITM was calculated as the difference in distance refractive state after task as compared with before task immediately after reading. All subjects received timolol maleate to block the sympathetic nervous system and betaxolol as a control agent in independent test sessions separated by at least 3 days. Forty minutes after drug instillation, the NITM measurement procedure was repeated. RESULTS. Initial NITM magnitude was larger in subjects with myopia than in subjects with emmetropia before and after timolol instillation. Furthermore, NITM magnitude in subjects with sympathetic access was increased after timolol instillation. In contrast, with the control agent betaxolol, there was no increase. NITM decay duration to baseline was increased after timolol instillation in the subjects with myopia only. Only 15% of the subjects (n = 3 subjects with myopia) demonstrated effective and significant access to sympathetic facility. CONCLUSIONS. Subjects with myopia demonstrated an increase in decay duration with timolol, thus suggesting impaired sympathetic inhibition of accommodation. This may be a precursor for myopia progression in some persons.
Resumo:
The binding issue of th is thesis was the examination of workload, induced by relinotopic and spatiotopic stimuli, on both the ocu lomotor and cardiovascular systems together with investigating the covariation between the two systems - the 'eye-heart' link. Further, the influence of refractive error on ocular accommodation and cardiovascular function was assessed. A clinical evaluation was undertaken to assess the newly available open-view infrared Shin-Nippon NVision-K 5001 optometer, its benefit being the capability to measure through pupils = 2.3 mm. Measurements of refractive error taken with the NVision-K were found to be both accurate (Difference in Mean Spherical Equivalent: 0.14 ± 0.35 D; p = 0.67) and repeatable when compared to non-cycloplegic subjective refraction. Due to technical difficulties, however, the NVision-K could not be used for the purpose of the thesis, as such, measures of accommodation were taken using the continuously recording Shin-Nippon SRW-5000 openview infrared optometer, coupled with a piezo-electric finger pulse transducer to measure pulse. Heart rate variability (HRV) was spectrally analysed to determine the systemic sympathetic and parasympathetic components of the autonomic nervous system (ANS). A large sample (n = 60), cross-sectional study showed late-onset myopes (LOMs) display less accurate responses when compared to other refractive groups at high accommodative demand levels (3 .0 0 and 4.0D). Tonic accommodation (TA) was highest in the hypermetropes, fo llowed by emmetropes and early-onset myopes while the LOM subjects demonstrated statistically significant lower levels of TA. The root-meansquare (RMS) value of the accommodative response was shown to amplify with increased levels of accommodative demand. Changes in refractive error only became significant between groups at higher demand levels (3.0 D and 4.0 D) with the LOMs showing the largest magnification in oscilIations. Examination of the stimulus-response cross-over point with the unit ratio line and TA showed a correlation between the two (r = 0.45, p = 0.001), where TA is approximately twice the dioptric value of the stimulus-response cross-over point. Investigation of the relationship between ocular accommodation and systemic ANS function demonstrated covariation between the systems. Subjects with a faster heart rate (lower heart period) tended to have a higher TA value (r = -0.27, p < 0.05). Further, an increase in accommodative demand accompanies a faster heart rate. The influence of refractive error on the cardiovascular response to changes in accommodative demand, however, was equivocal. Examination of the microfluctuations ofacconunodation demonstrated a correlation between the temporal frequency location of the accommodative high Frequency component (HFC) and the arterial pulse frequency. The correlation was present at a range of accommodative demands from 0.0 D to 4.0 D and in all four refractive groups, suggesting that the HFC was augmented by physiological factors. Examination of the effect of visual cognition on ocular accommodation and the ANS confirmed that increasing levels of cognition affect the accommodative mechanism. The accommodative response shifted away from the subject at both near and far. This shift in accommodative response accompanied a decay in the systemic parasympathetic innervation to the heart. Differences between refractive groups also existed with LOMs showing less accurate responses compared to emmetropes. This disparity, however, appeared to be augmented by the systemic sympathetic nervous system. The investigations discussed explored Ihe role of oculomotor and cardiovascular fu nction in workload enviromnents, providing evidence for a behavioural link between the cardiovascular and oculomotor systems.
Resumo:
There were four principal sections to the work: 1. Investigation of ocular and systemic vascular risk factors in POAG. The principal findings of this work were: a). Glaucoma patients exhibit an anticipatory reaction to the physical stress, similar to subjects at risk for cardiovascular diseases; a blunted BP response and a reduction in ONH blood flow in response to cold provocation was also recorded. b). Silent myocardial ischaemic episodes occurred during peaks in systemic BP and HR. c). Independent of a positive history for cardiovascular diseases, patients suffering from POAG demonstrate a blunt circadian rhythm of the ANS. 2. Assessment of the relationship between vascular and systemic vascular risk factors in GON. The principal findings of this work were: a). POAG patients demonstrate a high sympathetic tonus over a 24-h period. b). POAG patients with lower OBF demonstrate both 24-h systemic BP and HRV abnormalities. c). OBF alterations observed in some glaucoma patients could be either primary or secondary to systemic haemodynamic disturbances and not a consequence of ONH damage. 3. Assessment of the level of systemic anti-oxidant defence in POAG patients. The principal finding of this work was: Patients suffering from POAG demonstrated significantly lower GSH and t-GSH levels than normal controls. 4. Investigation of the effect of treatment with latanoprost 0.005% on visual function and OBF. The findings of this work were: a). Treatment with latanoprost 0.005% resulted in a significant decrease in IOP and increase in OPP. VF damage progression has also been stopped. b). Treatment with latanoprost 0.005% resulted in a significant increase in the OBF parameters measured at the ONH and peripapillary retina levels. Finally, the importance of a clear protocol for managing new POAG cases is highlighted and a clinical conduit is proposed.
Resumo:
In the absence of adequate visual stimulation accommodation adopts an intermediate resting position, appropriately termed tonic accommodation (TA). A period of sustained fixation can modify the tonic resting position, and indicate the adaptation properties of TA. This thesis investigates various factors contributing to the accommodative response during sustained visual tasks, in particular the adaptation of TA. Objective infra-red optometry was chosen as the most effective method of measurement of accommodation. This technique was compared with other methods of measuring TA and the results found to be well correlated. The inhibitory sympathetic input to the ciliary muscle provides the facility to attenuate the magnitude and duration of adaptive changes in TA. This facility is, however, restricted to those individuals having relatively high levels of pre-task TA. Furthermore, the facility is augmented by substantial levels of concurrent parasympathetic activity. The imposition of mental effort can induce concurrent changes in TA which are predominantly positive and largely the result of an increase in parasympathetic innervation of the ciliary muscle although there is some evidence for sympathetic attentuation at higher levels of TA. In emmetropes sympathetic inhibition can modify the effect of mental effort on the steady-state accommodative response at near. Late-onset myopes (onset after the age of 15 years) have significantlylower values of TA then emmetropes. Similarly, late-onset myopes show lower values of steady-state accommodative response for nearstimuli. The imposition of mental effort induces concurrent increases in TA and steady-state accommodative response in the myopic group which are significantly greater than those for emmetropes. Estimates of TA made under bright empty-field conditions are well correlated with those made under darkroom conditions. The method by which the accommodative loop is opened has no significant effect on the magnitude and duration of post-task shifts in TA induced by a near vision task. Significant differences in the post-task shifts in TA induced by a near vision task exist between emmetropes and late-onset myopes, the post-task shifts being more sustained for the myopic group.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Introduction - Monocytes, with 3 different subsets, are implicated in the initiation and progression of the atherosclerotic plaque contributing to plaque instability and rupture. Mon1 are the “classical” monocytes with inflammatory action, whilst Mon3 are considered reparative with fibroblast deposition ability. The function of the newly described Mon2 subset is yet to be fully described. In PCI era, fewer patients have globally reduced left ventricular ejection fraction post infarction, hence the importance of studying regional wall motion abnormalities and deformation at segmental levels using longitudinal strain. Little is known of the role for the 3 monocyte subpopulations in determining global strain in ST elevation myocardial infarction patients (STEMI). Conclusion In patients with normal or mildly impaired EF post infarction, higher counts of Mon1 and Mon2 are correlated with GLS within 7 days and at 6 months of remodelling post infarction. Adverse clinical outcomes in patients with reduced convalescent GLS were predicted with Mon1 and Mon2 suggestive of an inflammatory role for the newly identified Mon2 subpopulation. These results imply an important role for monocytes in myocardial healing when assessed by subclinical ventricular function indices. Methodology - STEMI patients (n = 101, mean age 64 ± 13 years; 69% male) treated with percutaneous revascularisation were recruited within 24 h post-infarction. Peripheral blood monocyte subpopulations were enumerated and characterised using flow cytometry after staining for CD14, CD16 and CCR2. Phenotypically, monocyte subpopulations are defined as: CD14++CD16-CCR2+ (Mon1), CD14++CD16+CCR2+ (Mon2) and CD14+CD16++CCR2- (Mon3). Phagocytic activity of monocytes was measured using flow cytometry and Ecoli commercial kit. Transthoracic 2D echocardiography was performed within 7 days and at 6 months post infarct to assess global longitudinal strain (GLS) via speckle tracking. MACE was defined as recurrent acute coronary syndrome and death. Results - STEMI patients with EF ≥50% by Simpson’s biplane (n = 52) had GLS assessed. Using multivariate regression analysis higher counts of Mon1 and Mon 2 and phagocytic activity of Mon2 were significantly associated with GLS (after adjusting for age, time to hospital presentation, and peak troponin levels) (Table 1). At 6 months, the convalescent GLS remained associated with higher counts of Mon1, Mon 2. At one year follow up, using multivariate Cox regression analysis, Mon1 and Mon2 counts were an independent predictor of MACE in patients with a reduced GLS (n = 21)
Resumo:
OBJECTIVES: Exposure to active mobile phones (MP) has been shown to affect human neural function as shown by the electroencephalogram (EEG). Although it has not been determined whether such effects are harmful, a number of devices have been developed that attempt to minimize these MP-related effects. One such device, the Q Link Ally® (QL; Clarus Products, International, L.L.C., San Rafael, CA), is argued to affect the human organism in such a way as to attenuate the effect of MPs. The present pilot study was designed to determine whether there is any indication that QL does alter MP-related effects on the human EEG. DESIGN: Twenty-four (24) subjects participated in a single-blind, fully counterbalanced crossover design in which subjects' resting EEG and phase-locked neural responses to auditory stimuli were assessed under conditions of either active MP or active MP plus QL. RESULTS: The addition of QL to the MP condition increased resting EEG in the gamma range and did so as a function of exposure duration, and it attenuated MP-related effects in the delta and alpha range (at trend-level). The addition of the QL also affected phase-locked neural responses, with a laterality reversal in the alpha range and an alteration to changes over time in the delta range, a reduction of the MP-related beta decrease over time at fronto-posterior sites, and a global reduction in the gamma range that increased as a function of exposure duration. No unambiguous relations were found between these changes and either performance or psychologic state. CONCLUSIONS: This pilot study suggests that the addition of the QL to active MP-exposure does affect neural function in humans, altering both resting EEG patterns and the evoked neural response to auditory stimuli, and that there is a tendency for some MP-related changes to the EEG to be attenuated by the QL.
Resumo:
Background: Monocytes are implicated in the initiation and progression of the atherosclerotic plaque contributing to plaque instability and rupture. Little is known about the role of the three phenotypically and functionally different monocyte subpopulations in determining ventricular remodelling following ST elevation myocardial infarction (STEMI). Mon1 are the ‘classical’ monocytes with inflammatory action, whilst Mon3 are considered reparative with fibroblast deposition ability. The function of the newly described Mon2 subset is yet to be fully described. Method: STEMI patients (n=196, mean age 62±13 years; 72% male) treated with percutaneous revascularization were recruited within the first 24 h post-infarction. Peripheral blood monocyte subpopulations were enumerated and characterised using flow cytometry after staining for CD14, CD16 and CCR2. Phenotypically, monocyte subpopulations are defined as: CD14++CD16-CCR2+ (Mon1), CD14++CD16+CCR2+ (Mon2) and CD14+CD16++CCR2- (Mon3) cells. Transthoracic 2D echocardiography was performed within 7 days and at 6 months post infarct to assess ventricular volumes, mass, systolic, and diastolic functions as well as strain and strain rate. Results: Using linear regression analysis higher counts for Mon1, and lower counts for Mon2 and Mon3 were significantly associated with the baseline left ventricular ejection fraction (LVEF) within 7 days post infarct (table 1). At 6 months post STEMI lower counts of Mon2 remained positively associated with a decrease in LVEF at completion of remodelling (p=0.002). Conclusion: Peripheral monocytes of all three subsets correlate with LVEF after a myocardial infarction. High counts of the inflammatory Mon1 are associated with the reduced baseline ejection fraction post infarction. After remodelling, the convalescent ejection fraction was independently predicted by monocyte subpopulation 2. As lower counts depicted negative ventricular remodelling, this suggests a possible myofibroblast deposition and angiogenesis role for the newly described intermediate monocyte subpopulation Mon2 as opposed to the previously anticipated inflammatory role.