3 resultados para Mutations in proteins
em Aston University Research Archive
Resumo:
Background and Purpose Receptor activity-modifying proteins (RAMPs) define the pharmacology of the calcitonin receptor-like receptor (CLR). The interactions of the different RAMPs with this class B GPCR yield high-affinity calcitonin gene-related peptide (CGRP) or adrenomedullin (AM) receptors. However, the mechanism for this is unclear. Experimental Approach Guided by receptor models, we mutated residues in the N-terminal helix of CLR, RAMP2 and RAMP3 hypothesized to be involved in peptide interactions. These were assayed for cAMP production with AM, AM2 and CGRP together with their cell surface expression. Binding studies were also conducted for selected mutants. Key Results An important domain for peptide interactions on CLR from I32 to I52 was defined. Although I41 was universally important for binding and receptor function, the role of other residues depended on both ligand and RAMP. Peptide binding to CLR/RAMP3 involved a more restricted range of residues than that to CLR/RAMP1 or CLR/RAMP2. E101 of RAMP2 had a major role in AM interactions, and F111/W84 of RAMP2/3 was important with each peptide. Conclusions and Implications RAMP-dependent effects of CLR mutations suggest that the different RAMPs control accessibility of peptides to binding residues situated on the CLR N-terminus. RAMP3 appears to alter the role of specific residues at the CLR-RAMP interface compared with RAMP1 and RAMP2. © 2013 The Authors. British Journal of Pharmacology published by John Wiley &. Sons Ltd on behalf of The British Pharmacological Society.
Resumo:
Background. The secondary structure of folded RNA sequences is a good model to map phenotype onto genotype, as represented by the RNA sequence. Computational studies of the evolution of ensembles of RNA molecules towards target secondary structures yield valuable clues to the mechanisms behind adaptation of complex populations. The relationship between the space of sequences and structures, the organization of RNA ensembles at mutation-selection equilibrium, the time of adaptation as a function of the population parameters, the presence of collective effects in quasispecies, or the optimal mutation rates to promote adaptation all are issues that can be explored within this framework. Results. We investigate the effect of microscopic mutations on the phenotype of RNA molecules during their in silico evolution and adaptation. We calculate the distribution of the effects of mutations on fitness, the relative fractions of beneficial and deleterious mutations and the corresponding selection coefficients for populations evolving under different mutation rates. Three different situations are explored: the mutation-selection equilibrium (optimized population) in three different fitness landscapes, the dynamics during adaptation towards a goal structure (adapting population), and the behavior under periodic population bottlenecks (perturbed population). Conclusions. The ratio between the number of beneficial and deleterious mutations experienced by a population of RNA sequences increases with the value of the mutation rate µ at which evolution proceeds. In contrast, the selective value of mutations remains almost constant, independent of µ, indicating that adaptation occurs through an increase in the amount of beneficial mutations, with little variations in the average effect they have on fitness. Statistical analyses of the distribution of fitness effects reveal that small effects, either beneficial or deleterious, are well described by a Pareto distribution. These results are robust under changes in the fitness landscape, remarkably when, in addition to selecting a target secondary structure, specific subsequences or low-energy folds are required. A population perturbed by bottlenecks behaves similarly to an adapting population, struggling to return to the optimized state. Whether it can survive in the long run or whether it goes extinct depends critically on the length of the time interval between bottlenecks. © 2010 Stich et al; licensee BioMed Central Ltd.
Resumo:
Craniopharyngiomas and pituitary adenomas are both tumors of the hypothalamic and pituitary region, respectively that are frequently associated with endocrine defects either because of direct involvement of hormone producing cells (most pituitary tumors) or because of secondary defects due to disturbance of hypothalamic function (some pituitary tumors and craniopharyngiomas). Some studies suggest that mutant β-catenin gene cells in craniopharyngiomas and pituitary adenomas contribute to their tumorigenesis. DNA was extracted from 73 cranial tumors and subjected to polymerase chain reaction (PCR) with previously described primers encompassing glycogen synthase kinase-3β phosphorylation sites of the β-catenin gene. Sequenced PCR products for possible β-catenin gene mutations showed a total of 7/43 alterations in adamantinomatous craniopharyngioma-derived DNA samples. Two previously described β-catenin mutations in codon 33 TCT(Ser) > TGT(Cys) and codon 37 TCT(Ser) > TTT(Phe), whereas three novel mutations in codon 41 ACC(Thr) > ATC(Ile), codon 33 TCT(Ser) > TAT(Tyr) and codon 32 GAC(Asp) > AAC(Asn) were observed. None of the 22 pituitary adenomas and the eight papillary craniopharyngiomas analyzed presented any sequence alterations. These findings demonstrate an association between β-catenin gene alterations and craniopharyngiomas of the adamantinomatous type. Since this gene product is involved with development, these results suggest that β-catenin mutations may contribute to the initiation and subsequent growth of congenital craniopharyngiomas. © Springer 2005.