7 resultados para Museum conservation methods.
em Aston University Research Archive
Resumo:
The rapid global loss of biodiversity has led to a proliferation of systematic conservation planning methods. In spite of their utility and mathematical sophistication, these methods only provide approximate solutions to real-world problems where there is uncertainty and temporal change. The consequences of errors in these solutions are seldom characterized or addressed. We propose a conceptual structure for exploring the consequences of input uncertainty and oversimpli?ed approximations to real-world processes for any conservation planning tool or strategy. We then present a computational framework based on this structure to quantitatively model species representation and persistence outcomes across a range of uncertainties. These include factors such as land costs, landscape structure, species composition and distribution, and temporal changes in habitat. We demonstrate the utility of the framework using several reserve selection methods including simple rules of thumb and more sophisticated tools such as Marxan and Zonation. We present new results showing how outcomes can be strongly affected by variation in problem characteristics that are seldom compared across multiple studies. These characteristics include number of species prioritized, distribution of species richness and rarity, and uncertainties in the amount and quality of habitat patches. We also demonstrate how the framework allows comparisons between conservation planning strategies and their response to error under a range of conditions. Using the approach presented here will improve conservation outcomes and resource allocation by making it easier to predict and quantify the consequences of many different uncertainties and assumptions simultaneously. Our results show that without more rigorously generalizable results, it is very dif?cult to predict the amount of error in any conservation plan. These results imply the need for standard practice to include evaluating the effects of multiple real-world complications on the behavior of any conservation planning method.
Resumo:
Cultural anthropology has always been dependent on translation as a textual practice, and it has often used 'translation' as a metaphor to describe ethnography's processes of interpretation and cross-cultural comparison. Questions of intelligibility and representation are central to both translation studies and ethnographic writing - as are the dilemmas of cultural distance or proximity, exoticism or appropriation. Similarly, recent work in museum studies discusses problems of representation that are raised by ethnographic museums as multimedia 'translations'. However, as yet there has been remarkably little interdisciplinary exchange: neither has translation studies kept up with the sophistication of anthropology's investigations of meaning, representation and 'culture' itself, nor have anthropology and museum studies often looked to translation studies for analyses of language difference or concrete methods of tracing translation practices.
Resumo:
Mathematical methods in systematic conservation planning (SCP) represent a significant step toward cost-effective, transparent allocation of resources for biodiversity conservation. However, research demonstrates important consequences of uncertainties in SCP. Current research often relies on simplified case studies with unknown forms and amounts of uncertainty and low statistical power for generalizing results. Consequently, conservation managers have little evidence for the true performance of conservation planning methods in their own complex, uncertain applications. SCP needs to build evidence for predictive models of error and robustness to multiple, simultaneous uncertainties across a wide range of problems of known complexity. Only then can we determine true performance rather than how a method appears to perform on data with unknown uncertainty.
Resumo:
The aim of the research project was to gain d complete and accurate accounting of the needs and deficiencies of materials selection and design data, with particular attention given to the feasibility of a computerised materials selection system that would include application analysis, property data and screening techniques. The project also investigates and integrates the three major aspects of materials resources, materials selection and materials recycling. Consideration of the materials resource base suggests that, though our discovery potential has increased, geologic availability is the ultimate determinant and several metals may well become scarce at the same time, thus compounding the problem of substitution. With around 2- to 20- million units of engineering materials data, the use of a computer is the only logical answer for scientific selection of materials. The system developed at Aston is used for data storage, mathematical computation and output. The system enables programs to be run in batch and interactive (on-line) mode. The program with modification can also handle such variables as quantity of mineral resources, energy cost of materials and depletion and utilisation rates of strateqic materials. The work also carries out an in-depth study of copper recycling in the U.K. and concludes that, somewhere in the region of 2 million tonnes of copper is missing from the recycling cycle. It also sets out guidelines on product design and conservation policies from the recyclability point of view.
Resumo:
World and UK energy resources and use are reviewed and the role of energy conservation in energy policy identified. In considering various energy conservation measures, a distinction is made between energy intensive and non-intensive industries and also between direct and indirect uses of energy. Particular attention is given to the non-intensive user of energy. Energy use on one such industrial site has been studied to determine the most effective energy saving measures in the short term. Here it is estimated that over 65% of energy is consumed for indirect purposes, mainly for heating and lighting buildings. Emphasis is placed on energy auditing techniques and those energy saving measures requiring greater technical, economic and organisational resources to secure their implementation. Energy auditing techniques include the use of aerial thermography and snow formation surveys to detect heat losses. Qualitative and quantitative interpretations are carried out, but restricted mainly to evaluating building roof heat losses. From the energy auditing exercise, it is confirmed that the intermittent heating of buildings is the largest and most cost effective fuel saving measure. This was implemented on the site and a heat monitoring programme established to verify results. Industrial combined heat and power generation is investigated. A proposal for the site demonstrates that there are several obstacles to its successful implementation. By adopting an alternative financial rationale, a way of overcoming these obstacles is suggested. A useful by-product of the study is the classification of industrial sites according to the nature of industrial energy demand patterns. Finally, energy saving measures implemented on the site are quantlfied using comparative verification methods. Overall fuel savings of 13% are indicated. Cumulative savings in heating fuel amount to 26% over four years although heated area increased by approximately 25%.
Resumo:
The effectiveness of the strategies employed by the Urban Wildlife Group (a voluntary conservation organisation) to provide and manage three urban nature parks has been evaluated, using a multiple methods methodology. Where the level of community interest and commitment to a project is high, the utilisation of the community nature park strategy (to maximise benefits to UWG and the community) is warranted. Where the level of interest and commitment of the local community is low, a strategy designed to encourage limited involvement of the community is most effective and efficient. The campaign strategy, whereby the community and UWG take direct action to oppose a threat of undesirable development on a nature park, is assessed to be a sub-strategy, rather than a strategy in its own right. Questionnaire surveys and observations studies have revealed that urban people appreciate and indeed demand access to nature parks in urban areas, which have similar amenity value to that provided by countryside recreation sites. Urban nature parks are valued for their natural character, natural features (trees, wild flowers) peace and quiet, wildlife and openness. People use these sites for a mixture of informal and mainly passive activities, such as walking and dog walking. They appear to be of particular value to children for physical and imaginative play. The exact input of time and resources that UWG has committed to the projects has depended on the level of input of the local authority. The evidence indicates that the necessary technical expertise needed to produce and manage urban nature parks, using a user-oriented approach is not adequately provided by local authorities. The methods used in this research are presented as an `evaluation kit' that may be used by practitioners and researchers to evaluate the effectiveness of a wide range of different open spaces and the strategies employed to provide and manage them.
Resumo:
The last few years have witnessed an unprecedented increase in the price of energy available to industry in the United Kingdom and worldwide. The steel industry, as a major consumer of energy delivered in U.K. (8% of national total and nearly 25% of industrial total) and whose energy costs currently form some 28% of the total manufacturing cost, is very much aware of the need to conserve energy. Because of the complexities of steelmaking processes it is imperative that a full understanding of each process and its interlinking role in an integrated steelworks is understood. An analysis of energy distribution shows that as much as 70% of heat input is dissipated to the environment in a variety of forms. Of these, waste gases offer the best potential for energy conservation. The study identifies areas for and discusses novel methods of energy conservation in each process. Application of these schemes in BSC works is developed and their economic incentives highlighted. A major part of this thesis describes design, development and testing of a novel ceramic rotary regenerator for heat recovery from high temperature waste gases, where no such system is available. The regenerator is a compact, efficient heat exchanger. Application of such a system to a reheating furnace provides a fuel saving of up to 40%. A mathematical model developed is verified on the pilot plant. The results obtained confirm the success of the concept and material selection and outlines the work needed to develop an industrial unit. Last, but not least, the key position of an energy manager in an energy conservation programme is identified and a new Energy Management Model for the BSC is developed.