6 resultados para Multiple primary tumors

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Merlin has broad tumor-suppressor functions as its mutations have been identified in multiple benign tumors and malignant cancers. In all schwannomas, the majority of meningiomas and 1/3 of ependymomas Merlin loss is causative. In neurofibromatosis type 2, a dominantly inherited tumor disease because of the loss of Merlin, patients suffer from multiple nervous system tumors and die on average around age 40. Chemotherapy is not effective and tumor localization and multiplicity make surgery and radiosurgery challenging and morbidity is often considerable. Thus, a new therapeutic approach is needed for these tumors. Using a primary human in vitro model for Merlin-deficient tumors, we report that the Ras/Raf/mitogen-activated protein, extracellular signal-regulated kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) scaffold, kinase suppressor of Ras 1 (KSR1), has a vital role in promoting schwannomas development. We show that KSR1 overexpression is involved in many pathological phenotypes caused by Merlin loss, namely multipolar morphology, enhanced cell-matrix adhesion, focal adhesion and, most importantly, increased proliferation and survival. Our data demonstrate that KSR1 has a wider role than MEK1/2 in the development of schwannomas because adhesion is more dependent on KSR1 than MEK1/2. Immunoprecipitation analysis reveals that KSR1 is a novel binding partner of Merlin, which suppresses KSR1's function by inhibiting the binding between KSR1 and c-Raf. Our proteomic analysis also demonstrates that KSR1 interacts with several Merlin downstream effectors, including E3 ubiquitin ligase CRL4DCAF1. Further functional studies suggests that KSR1 and DCAF1 may co-operate to regulate schwannomas formation. Taken together, these findings suggest that KSR1 serves as a potential therapeutic target for Merlin-deficient tumors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To study the topographic distribution of the pathology in multiple system atrophy (MSA). Pattern analysis was carried out using a-synuclein immunohistochemistry in 10 MSA cases. The glial cytoplasmic inclusions (GCI) were distributed randomly or in large clusters. The neuronal inclusions (NI) and abnormal neurons were distributed in regular clusters. Clusters of the NI and abnormal neurons were spatially correlated whereas the GCI were not spatially correlated with either the NI or the abnormal neurons. The data suggest that the GCI represent the primary change in MSA and the neuronal pathology develops secondary to the glial pathology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiple system atrophy (MSA) is a rare movement disorder and a member of a group of neurodegenerative diseases referred to collectively as the ‘parkinsonian syndromes’. Characteristic of these syndromes is that the patient exhibits symptoms of ‘parkinsonism’, viz., a range of problems involving movement, most typically manifest in Parkinson’s disease (PD) itself1, but also seen in progressive supranuclear palsy (PSP), and to some extent in dementia with Lewy bodies (DLB). MSA is a relatively ‘new’ descriptive term and is derived from three previously described diseases, viz., olivopontocerebellar atrophy, striato-nigral degeneration, and Shy-Drager syndrome. The classical symptoms of MSA include parkinsonism, ataxia, and autonomic dysfunction.6 Ataxia describes a gross lack of coordination of muscle movements while autonomic dysfunction involves a variety of systems that regulate unconscious bodily functions such as heart rate, blood pressure, bladder function, and digestion. Although primarily a neurological disorder, patients with MSA may also develop visual signs and symptoms that could be useful in differential diagnosis. The most important visual signs may include oculomotor dysfunction and problems in pupil reactivity but are less likely to involve aspects of primary vision such as visual acuity, colour vision, and visual fields. In addition, the eye-care practitioner can contribute to the management of the visual problems of MSA and therefore, help to improve quality of life of the patient. Hence, this first article in a two-part series describes the general features of MSA including its prevalence, signs and symptoms, diagnosis, pathology, and possible causes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To investigate the dynamics of communication within the primary somatosensory neuronal network. Methods: Multichannel EEG responses evoked by median nerve stimulation were recorded from six healthy participants. We investigated the directional connectivity of the evoked responses by assessing the Partial Directed Coherence (PDC) among five neuronal nodes (brainstem, thalamus and three in the primary sensorimotor cortex), which had been identified by using the Functional Source Separation (FSS) algorithm. We analyzed directional connectivity separately in the low (1-200. Hz, LF) and high (450-750. Hz, HF) frequency ranges. Results: LF forward connectivity showed peaks at 16, 20, 30 and 50. ms post-stimulus. An estimate of the strength of connectivity was modulated by feedback involving cortical and subcortical nodes. In HF, forward connectivity showed peaks at 20, 30 and 50. ms, with no apparent feedback-related strength changes. Conclusions: In this first non-invasive study in humans, we documented directional connectivity across subcortical and cortical somatosensory pathway, discriminating transmission properties within LF and HF ranges. Significance: The combined use of FSS and PDC in a simple protocol such as median nerve stimulation sheds light on how high and low frequency components of the somatosensory evoked response are functionally interrelated in sustaining somatosensory perception in healthy individuals. Thus, these components may potentially be explored as biomarkers of pathological conditions. © 2012 International Federation of Clinical Neurophysiology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiple system atrophy (MSA) is a rare movement disorder and a member of the 'parkinsonian syndromes', which also include Parkinson's disease (PD), progressive supranuclear palsy (PSP), dementia with Lewy bodies (DLB) and corticobasal degeneration (CBD). Multiple system atrophy is a complex syndrome, in which patients exhibit a variety of signs and symptoms, including parkinsonism, ataxia and autonomic dysfunction. It can be difficult to separate MSA from the other parkinsonian syndromes but if ocular signs and symptoms are present, they may aid differential diagnosis. Typical ocular features of MSA include blepharospasm, excessive square-wave jerks, mild to moderate hypometria of saccades, impaired vestibular-ocular reflex (VOR), nystagmus and impaired event-related evoked potentials. Less typical features include slowing of saccadic eye movements, the presence of vertical gaze palsy, visual hallucinations and an impaired electroretinogram (ERG). Aspects of primary vision such as visual acuity, colour vision or visual fields are usually unaffected. Management of the disease to deal with problems of walking, movement, daily tasks and speech problems is important in MSA. Optometrists can work in collaboration with the patient and health-care providers to identify and manage the patient's visual deficits. A more specific role for the optometrist is to correct vision to prevent falls and to monitor the anterior eye to prevent dry eye and control blepharospasm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditional methods of describing and classifying neurodegenerative disease are based on the clinico-pathological concept supported by molecular pathological studies and defined by 'consensus criteria'. Disease heterogeneity, overlap between disorders, and the presence of multiple co-pathologies, however, have questioned the validity and status of many traditional disorders. If cases of neurodegenerative disease are not easily classifiable into distinct entities, but more continuously distributed, then a new descriptive framework may be required. This review proposes that there are four key neuropathological features of neurodegenerative disease (the 'primary determinants') that could be used to provide such a framework, viz., the anatomical pathways affected by the disease ('anatomy'), the cell populations affected ('cells'), the molecular pathology of 'signature' pathological lesions ('molecules'), and the morphological types of neurodegeneration ('morphology'). This review first discusses the limitations of existing classificatory systems and second provides evidence that the four primary determinants could be used as axes to define all cases of neurodegenerative disease. To illustrate the methodology, the primary determinants were applied to the study of a group of closely related tauopathy cases and to heterogeneity within frontotemporal lobar degeneration with TDP-43 proteinopathy (FTLD-TDP).