28 resultados para Multiple Objective Optimization

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the contemporary customer-driven supply chain, maximization of customer service plays an equally important role as minimization of costs for a company to retain and increase its competitiveness. This article develops a multiple-criteria optimization approach, combining the analytic hierarchy process (AHP) and an integer linear programming (ILP) model, to aid the design of an optimal logistics distribution network. The proposed approach outperforms traditional cost-based optimization techniques because it considers both quantitative and qualitative factors and also aims at maximizing the benefits of deliverer and customers. In the approach, the AHP is used to determine the relative importance weightings or priorities of alternative warehouses with respect to some critical customer-oriented criteria. The results of AHP prioritization are utilized as the input of the ILP model, the objective of which is to select the best warehouses at the lowest possible cost. In this article, two commercial packages are used: including Expert Choice and LINDO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To solve multi-objective problems, multiple reward signals are often scalarized into a single value and further processed using established single-objective problem solving techniques. While the field of multi-objective optimization has made many advances in applying scalarization techniques to obtain good solution trade-offs, the utility of applying these techniques in the multi-objective multi-agent learning domain has not yet been thoroughly investigated. Agents learn the value of their decisions by linearly scalarizing their reward signals at the local level, while acceptable system wide behaviour results. However, the non-linear relationship between weighting parameters of the scalarization function and the learned policy makes the discovery of system wide trade-offs time consuming. Our first contribution is a thorough analysis of well known scalarization schemes within the multi-objective multi-agent reinforcement learning setup. The analysed approaches intelligently explore the weight-space in order to find a wider range of system trade-offs. In our second contribution, we propose a novel adaptive weight algorithm which interacts with the underlying local multi-objective solvers and allows for a better coverage of the Pareto front. Our third contribution is the experimental validation of our approach by learning bi-objective policies in self-organising smart camera networks. We note that our algorithm (i) explores the objective space faster on many problem instances, (ii) obtained solutions that exhibit a larger hypervolume, while (iii) acquiring a greater spread in the objective space.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heterogeneous multi-core FPGAs contain different types of cores, which can improve efficiency when used with an effective online task scheduler. However, it is not easy to find the right cores for tasks when there are multiple objectives or dozens of cores. Inappropriate scheduling may cause hot spots which decrease the reliability of the chip. Given that, our research builds a simulating platform to evaluate all kinds of scheduling algorithms on a variety of architectures. On this platform, we provide an online scheduler which uses multi-objective evolutionary algorithm (EA). Comparing the EA and current algorithms such as Predictive Dynamic Thermal Management (PDTM) and Adaptive Temperature Threshold Dynamic Thermal Management (ATDTM), we find some drawbacks in previous work. First, current algorithms are overly dependent on manually set constant parameters. Second, those algorithms neglect optimization for heterogeneous architectures. Third, they use single-objective methods, or use linear weighting method to convert a multi-objective optimization into a single-objective optimization. Unlike other algorithms, the EA is adaptive and does not require resetting parameters when workloads switch from one to another. EAs also improve performance when used on heterogeneous architecture. A efficient Pareto front can be obtained with EAs for the purpose of multiple objectives.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The increasing number of victims from disasters in recent years results in several challenges for authorities aiming to protect and provide support to affected people. Humanitarian logistics represents one of the most important fields during preparedness and response in cases of disaster, seeking to provide relief, information and services to disaster victims. However, on top of the challenges of logistical activities, the successful completion of operations depends to a large extent on coordination. This is particularly important for developing countries, where disasters occur very often and resources are even scarcer. This paper assumes a multi-agency approach to disaster preparedness that combines geographical information systems (GIS) and multi-objective optimization. The purpose of the tool is to determine the location of emergency facilities, stock prepositioning and distribution allocation for floods. We illustrate the application and the results using a case study centred on Acapulco, México.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This book constitutes the refereed proceedings of the 14th International Conference on Parallel Problem Solving from Nature, PPSN 2016, held in Edinburgh, UK, in September 2016. The total of 93 revised full papers were carefully reviewed and selected from 224 submissions. The meeting began with four workshops which offered an ideal opportunity to explore specific topics in intelligent transportation Workshop, landscape-aware heuristic search, natural computing in scheduling and timetabling, and advances in multi-modal optimization. PPSN XIV also included sixteen free tutorials to give us all the opportunity to learn about new aspects: gray box optimization in theory; theory of evolutionary computation; graph-based and cartesian genetic programming; theory of parallel evolutionary algorithms; promoting diversity in evolutionary optimization: why and how; evolutionary multi-objective optimization; intelligent systems for smart cities; advances on multi-modal optimization; evolutionary computation in cryptography; evolutionary robotics - a practical guide to experiment with real hardware; evolutionary algorithms and hyper-heuristics; a bridge between optimization over manifolds and evolutionary computation; implementing evolutionary algorithms in the cloud; the attainment function approach to performance evaluation in EMO; runtime analysis of evolutionary algorithms: basic introduction; meta-model assisted (evolutionary) optimization. The papers are organized in topical sections on adaption, self-adaption and parameter tuning; differential evolution and swarm intelligence; dynamic, uncertain and constrained environments; genetic programming; multi-objective, many-objective and multi-level optimization; parallel algorithms and hardware issues; real-word applications and modeling; theory; diversity and landscape analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To determine the distribution of the pathological changes in the neocortex in multiple-system atrophy (MSA). METHOD: The vertical distribution of the abnormal neurons (neurons with enlarged or atrophic perikarya), surviving neurons, glial cytoplasmic inclusions (GCI) and neuronal cytoplasmic inclusions (NI) were studied in alpha-synuclein-stained material of frontal and temporal cortex in ten cases of MSA. RESULTS: Abnormal neurons exhibited two common patterns of distribution, viz., density was either maximal in the upper cortex or a bimodal distribution was present with a density peak in the upper and lower cortex. The NI were either located in the lower cortex or were more uniformly distributed down the cortical profile. The distribution of the GCI varied considerably between gyri and cases. The density of the glial cell nuclei was maximal in the lower cortex in the majority of gyri. In a number of gyri, there was a positive correlation between the vertical densities of the abnormal neurons, the total number of surviving neurons, and the glial cell nuclei. The vertical densities of the GCI were not correlated with those of the surviving neurons or glial cells but the GCI and NI were positively correlated in a small number of gyri. CONCLUSION: The data suggest that there is significant degeneration of the frontal and temporal lobes in MSA, the lower laminae being affected more significantly than the upper laminae. Cortical degeneration in MSA is likely to be secondary to pathological changes occurring within subcortical areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Physical distribution plays an imporant role in contemporary logistics management. Both satisfaction level of of customer and competitiveness of company can be enhanced if the distribution problem is solved optimally. The multi-depot vehicle routing problem (MDVRP) belongs to a practical logistics distribution problem, which consists of three critical issues: customer assignment, customer routing, and vehicle sequencing. According to the literatures, the solution approaches for the MDVRP are not satisfactory because some unrealistic assumptions were made on the first sub-problem of the MDVRP, ot the customer assignment problem. To refine the approaches, the focus of this paper is confined to this problem only. This paper formulates the customer assignment problem as a minimax-type integer linear programming model with the objective of minimizing the cycle time of the depots where setup times are explicitly considered. Since the model is proven to be MP-complete, a genetic algorithm is developed for solving the problem. The efficiency and effectiveness of the genetic algorithm are illustrated by a numerical example.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents two hybrid genetic algorithms (HGAs) to optimize the component placement operation for the collect-and-place machines in printed circuit board (PCB) assembly. The component placement problem is to optimize (i) the assignment of components to a movable revolver head or assembly tour, (ii) the sequence of component placements on a stationary PCB in each tour, and (iii) the arrangement of component types to stationary feeders simultaneously. The objective of the problem is to minimize the total traveling time spent by the revolver head for assembling all components on the PCB. The major difference between the HGAs is that the initial solutions are generated randomly in HGA1. The Clarke and Wright saving method, the nearest neighbor heuristic, and the neighborhood frequency heuristic are incorporated into HGA2 for the initialization procedure. A computational study is carried out to compare the algorithms with different population sizes. It is proved that the performance of HGA2 is superior to HGA1 in terms of the total assembly time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper develops and applies an integrated multiple criteria decision making approach to optimize the facility location-allocation problem in the contemporary customer-driven supply chain. Unlike the traditional optimization techniques, the proposed approach, combining the analytic hierarchy process (AHP) and the goal programming (GP) model, considers both quantitative and qualitative factors, and also aims at maximizing the benefits of deliverer and customers. In the integrated approach, the AHP is used first to determine the relative importance weightings or priorities of alternative locations with respect to both deliverer oriented and customer oriented criteria. Then, the GP model, incorporating the constraints of system, resource, and AHP priority is formulated to select the best locations for setting up the warehouses without exceeding the limited available resources. In this paper, a real case study is used to demonstrate how the integrated approach can be applied to deal with the facility location-allocation problem, and it is proved that the integrated approach outperforms the traditional costbased approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method has been constructed for the solution of a wide range of chemical plant simulation models including differential equations and optimization. Double orthogonal collocation on finite elements is applied to convert the model into an NLP problem that is solved either by the VF 13AD package based on successive quadratic programming, or by the GRG2 package, based on the generalized reduced gradient method. This approach is termed simultaneous optimization and solution strategy. The objective functional can contain integral terms. The state and control variables can have time delays. Equalities and inequalities containing state and control variables can be included into the model as well as algebraic equations and inequalities. The maximum number of independent variables is 2. Problems containing 3 independent variables can be transformed into problems having 2 independent variables using finite differencing. The maximum number of NLP variables and constraints is 1500. The method is also suitable for solving ordinary and partial differential equations. The state functions are approximated by a linear combination of Lagrange interpolation polynomials. The control function can either be approximated by a linear combination of Lagrange interpolation polynomials or by a piecewise constant function over finite elements. The number of internal collocation points can vary by finite elements. The residual error is evaluated at arbitrarily chosen equidistant grid-points, thus enabling the user to check the accuracy of the solution between collocation points, where the solution is exact. The solution functions can be tabulated. There is an option to use control vector parameterization to solve optimization problems containing initial value ordinary differential equations. When there are many differential equations or the upper integration limit should be selected optimally then this approach should be used. The portability of the package has been addressed converting the package from V AX FORTRAN 77 into IBM PC FORTRAN 77 and into SUN SPARC 2000 FORTRAN 77. Computer runs have shown that the method can reproduce optimization problems published in the literature. The GRG2 and the VF I 3AD packages, integrated into the optimization package, proved to be robust and reliable. The package contains an executive module, a module performing control vector parameterization and 2 nonlinear problem solver modules, GRG2 and VF I 3AD. There is a stand-alone module that converts the differential-algebraic optimization problem into a nonlinear programming problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

linearity management is explored as a complete tool to obtain maximum transmission reach in a WDM fiber transmission system, making it possible to optimize multiple system parameters, including optimal dispersion pre-compensation, with fast simulations based on the continuous-wave approximation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To investigate the dynamics of communication within the primary somatosensory neuronal network. Methods: Multichannel EEG responses evoked by median nerve stimulation were recorded from six healthy participants. We investigated the directional connectivity of the evoked responses by assessing the Partial Directed Coherence (PDC) among five neuronal nodes (brainstem, thalamus and three in the primary sensorimotor cortex), which had been identified by using the Functional Source Separation (FSS) algorithm. We analyzed directional connectivity separately in the low (1-200. Hz, LF) and high (450-750. Hz, HF) frequency ranges. Results: LF forward connectivity showed peaks at 16, 20, 30 and 50. ms post-stimulus. An estimate of the strength of connectivity was modulated by feedback involving cortical and subcortical nodes. In HF, forward connectivity showed peaks at 20, 30 and 50. ms, with no apparent feedback-related strength changes. Conclusions: In this first non-invasive study in humans, we documented directional connectivity across subcortical and cortical somatosensory pathway, discriminating transmission properties within LF and HF ranges. Significance: The combined use of FSS and PDC in a simple protocol such as median nerve stimulation sheds light on how high and low frequency components of the somatosensory evoked response are functionally interrelated in sustaining somatosensory perception in healthy individuals. Thus, these components may potentially be explored as biomarkers of pathological conditions. © 2012 International Federation of Clinical Neurophysiology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many automated negotiation models have been developed to solve the conflict in many distributed computational systems. However, the problem of finding win-win outcome in multiattribute negotiation has not been tackled well. To address this issue, based on an evolutionary method of multiobjective optimization, this paper presents a negotiation model that can find win-win solutions of multiple attributes, but needs not to reveal negotiating agents' private utility functions to their opponents or a third-party mediator. Moreover, we also equip our agents with a general type of utility functions of interdependent multiattributes, which captures human intuitions well. In addition, we also develop a novel time-dependent concession strategy model, which can help both sides find a final agreement among a set of win-win ones. Finally, lots of experiments confirm that our negotiation model outperforms the existing models developed recently. And the experiments also show our model is stable and efficient in finding fair win-win outcomes, which is seldom solved in the existing models. © 2012 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ant colony optimisation algorithms model the way ants use pheromones for marking paths to important locations in their environment. Pheromone traces are picked up, followed, and reinforced by other ants but also evaporate over time. Optimal paths attract more pheromone and less useful paths fade away. The main innovation of the proposed Multiple Pheromone Ant Clustering Algorithm (MPACA) is to mark objects using many pheromones, one for each value of each attribute describing the objects in multidimensional space. Every object has one or more ants assigned to each attribute value and the ants then try to find other objects with matching values, depositing pheromone traces that link them. Encounters between ants are used to determine when ants should combine their features to look for conjunctions and whether they should belong to the same colony. This paper explains the algorithm and explores its potential effectiveness for cluster analysis. © 2014 Springer International Publishing Switzerland.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To independently evaluate the impact of the second phase of the Health Foundation's Safer Patients Initiative (SPI2) on a range of patient safety measures. Design: A controlled before and after design. Five substudies: survey of staff attitudes; review of case notes from high risk (respiratory) patients in medical wards; review of case notes from surgical patients; indirect evaluation of hand hygiene by measuring hospital use of handwashing materials; measurement of outcomes (adverse events, mortality among high risk patients admitted to medical wards, patients' satisfaction, mortality in intensive care, rates of hospital acquired infection). Setting: NHS hospitals in England. Participants: Nine hospitals participating in SPI2 and nine matched control hospitals. Intervention The SPI2 intervention was similar to the SPI1, with somewhat modified goals, a slightly longer intervention period, and a smaller budget per hospital. Results: One of the scores (organisational climate) showed a significant (P=0.009) difference in rate of change over time, which favoured the control hospitals, though the difference was only 0.07 points on a five point scale. Results of the explicit case note reviews of high risk medical patients showed that certain practices improved over time in both control and SPI2 hospitals (and none deteriorated), but there were no significant differences between control and SPI2 hospitals. Monitoring of vital signs improved across control and SPI2 sites. This temporal effect was significant for monitoring the respiratory rate at both the six hour (adjusted odds ratio 2.1, 99% confidence interval 1.0 to 4.3; P=0.010) and 12 hour (2.4, 1.1 to 5.0; P=0.002) periods after admission. There was no significant effect of SPI for any of the measures of vital signs. Use of a recommended system for scoring the severity of pneumonia improved from 1.9% (1/52) to 21.4% (12/56) of control and from 2.0% (1/50) to 41.7% (25/60) of SPI2 patients. This temporal change was significant (7.3, 1.4 to 37.7; P=0.002), but the difference in difference was not significant (2.1, 0.4 to 11.1; P=0.236). There were no notable or significant changes in the pattern of prescribing errors, either over time or between control and SPI2 hospitals. Two items of medical history taking (exercise tolerance and occupation) showed significant improvement over time, across both control and SPI2 hospitals, but no additional SPI2 effect. The holistic review showed no significant changes in error rates either over time or between control and SPI2 hospitals. The explicit case note review of perioperative care showed that adherence rates for two of the four perioperative standards targeted by SPI2 were already good at baseline, exceeding 94% for antibiotic prophylaxis and 98% for deep vein thrombosis prophylaxis. Intraoperative monitoring of temperature improved over time in both groups, but this was not significant (1.8, 0.4 to 7.6; P=0.279), and there were no additional effects of SPI2. A dramatic rise in consumption of soap and alcohol hand rub was similar in control and SPI2 hospitals (P=0.760 and P=0.889, respectively), as was the corresponding decrease in rates of Clostridium difficile and meticillin resistant Staphylococcus aureus infection (P=0.652 and P=0.693, respectively). Mortality rates of medical patients included in the case note reviews in control hospitals increased from 17.3% (42/243) to 21.4% (24/112), while in SPI2 hospitals they fell from 10.3% (24/233) to 6.1% (7/114) (P=0.043). Fewer than 8% of deaths were classed as avoidable; changes in proportions could not explain the divergence of overall death rates between control and SPI2 hospitals. There was no significant difference in the rate of change in mortality in intensive care. Patients' satisfaction improved in both control and SPI2 hospitals on all dimensions, but again there were no significant changes between the two groups of hospitals. Conclusions: Many aspects of care are already good or improving across the NHS in England, suggesting considerable improvements in quality across the board. These improvements are probably due to contemporaneous policy activities relating to patient safety, including those with features similar to the SPI, and the emergence of professional consensus on some clinical processes. This phenomenon might have attenuated the incremental effect of the SPI, making it difficult to detect. Alternatively, the full impact of the SPI might be observable only in the longer term. The conclusion of this study could have been different if concurrent controls had not been used.