57 resultados para Multiple Criteria Decision Analysis (MCDA)

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study proposes an integrated analytical framework for effective management of project risks using combined multiple criteria decision-making technique and decision tree analysis. First, a conceptual risk management model was developed through thorough literature review. The model was then applied through action research on a petroleum oil refinery construction project in the Central part of India in order to demonstrate its effectiveness. Oil refinery construction projects are risky because of technical complexity, resource unavailability, involvement of many stakeholders and strict environmental requirements. Although project risk management has been researched extensively, practical and easily adoptable framework is missing. In the proposed framework, risks are identified using cause and effect diagram, analysed using the analytic hierarchy process and responses are developed using the risk map. Additionally, decision tree analysis allows modelling various options for risk response development and optimises selection of risk mitigating strategy. The proposed risk management framework could be easily adopted and applied in any project and integrated with other project management knowledge areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resource allocation is one of the major decision problems arising in higher education. Resources must be allocated optimally in such a way that the performance of universities can be improved. This paper applies an integrated multiple criteria decision making approach to the resource allocation problem. In the approach, the Analytic Hierarchy Process (AHP) is first used to determine the priority or relative importance of proposed projects with respect to the goals of the universities. Then, the Goal Programming (GP) model incorporating the constraints of AHP priority, system, and resource is formulated for selecting the best set of projects without exceeding the limited available resources. The projects include 'hardware' (tangible university's infrastructures), and 'software' (intangible effects that can be beneficial to the university, its members, and its students). In this paper, two commercial packages are used: Expert Choice for determining the AHP priority ranking of the projects, and LINDO for solving the GP model. Copyright © 2007 Inderscience Enterprises Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The purpose of this paper is to review the literature which focuses on four major higher education decision problems. These are: resource allocation; performance measurement; budgeting; and scheduling. Design/methodology/approach: Related articles appearing in the international journals from 1996 to 2005 are gathered and analyzed so that the following three questions can be answered: "What kind of decision problems were paid most attention to?"; "Were the multiple criteria decision-making techniques prevalently adopted?"; and "What are the inadequacies of these approaches?" Findings: Based on the inadequacies, some improvements and possible future work are recommended, and a comprehensive resource allocation model is developed taking account of these factors. Finally, a new knowledge-based goal programming technique which integrates some operations of analytic hierarchy process is proposed to tackle the model intelligently. Originality/value: Higher education has faced the problem of budget cuts or constrained budgets for the past 30 years. Managing the process of the higher education system is, therefore, a crucial and urgent task for the decision makers of universities in order to improve their performance or competitiveness. © Emerald Group Publishing Limited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Guest editorial Ali Emrouznejad is a Senior Lecturer at the Aston Business School in Birmingham, UK. His areas of research interest include performance measurement and management, efficiency and productivity analysis as well as data mining. He has published widely in various international journals. He is an Associate Editor of IMA Journal of Management Mathematics and Guest Editor to several special issues of journals including Journal of Operational Research Society, Annals of Operations Research, Journal of Medical Systems, and International Journal of Energy Management Sector. He is in the editorial board of several international journals and co-founder of Performance Improvement Management Software. William Ho is a Senior Lecturer at the Aston University Business School. Before joining Aston in 2005, he had worked as a Research Associate in the Department of Industrial and Systems Engineering at the Hong Kong Polytechnic University. His research interests include supply chain management, production and operations management, and operations research. He has published extensively in various international journals like Computers & Operations Research, Engineering Applications of Artificial Intelligence, European Journal of Operational Research, Expert Systems with Applications, International Journal of Production Economics, International Journal of Production Research, Supply Chain Management: An International Journal, and so on. His first authored book was published in 2006. He is an Editorial Board member of the International Journal of Advanced Manufacturing Technology and an Associate Editor of the OR Insight Journal. Currently, he is a Scholar of the Advanced Institute of Management Research. Uses of frontier efficiency methodologies and multi-criteria decision making for performance measurement in the energy sector This special issue aims to focus on holistic, applied research on performance measurement in energy sector management and for publication of relevant applied research to bridge the gap between industry and academia. After a rigorous refereeing process, seven papers were included in this special issue. The volume opens with five data envelopment analysis (DEA)-based papers. Wu et al. apply the DEA-based Malmquist index to evaluate the changes in relative efficiency and the total factor productivity of coal-fired electricity generation of 30 Chinese administrative regions from 1999 to 2007. Factors considered in the model include fuel consumption, labor, capital, sulphur dioxide emissions, and electricity generated. The authors reveal that the east provinces were relatively and technically more efficient, whereas the west provinces had the highest growth rate in the period studied. Ioannis E. Tsolas applies the DEA approach to assess the performance of Greek fossil fuel-fired power stations taking undesirable outputs into consideration, such as carbon dioxide and sulphur dioxide emissions. In addition, the bootstrapping approach is deployed to address the uncertainty surrounding DEA point estimates, and provide bias-corrected estimations and confidence intervals for the point estimates. The author revealed from the sample that the non-lignite-fired stations are on an average more efficient than the lignite-fired stations. Maethee Mekaroonreung and Andrew L. Johnson compare the relative performance of three DEA-based measures, which estimate production frontiers and evaluate the relative efficiency of 113 US petroleum refineries while considering undesirable outputs. Three inputs (capital, energy consumption, and crude oil consumption), two desirable outputs (gasoline and distillate generation), and an undesirable output (toxic release) are considered in the DEA models. The authors discover that refineries in the Rocky Mountain region performed the best, and about 60 percent of oil refineries in the sample could improve their efficiencies further. H. Omrani, A. Azadeh, S. F. Ghaderi, and S. Abdollahzadeh presented an integrated approach, combining DEA, corrected ordinary least squares (COLS), and principal component analysis (PCA) methods, to calculate the relative efficiency scores of 26 Iranian electricity distribution units from 2003 to 2006. Specifically, both DEA and COLS are used to check three internal consistency conditions, whereas PCA is used to verify and validate the final ranking results of either DEA (consistency) or DEA-COLS (non-consistency). Three inputs (network length, transformer capacity, and number of employees) and two outputs (number of customers and total electricity sales) are considered in the model. Virendra Ajodhia applied three DEA-based models to evaluate the relative performance of 20 electricity distribution firms from the UK and the Netherlands. The first model is a traditional DEA model for analyzing cost-only efficiency. The second model includes (inverse) quality by modelling total customer minutes lost as an input data. The third model is based on the idea of using total social costs, including the firm’s private costs and the interruption costs incurred by consumers, as an input. Both energy-delivered and number of consumers are treated as the outputs in the models. After five DEA papers, Stelios Grafakos, Alexandros Flamos, Vlasis Oikonomou, and D. Zevgolis presented a multiple criteria analysis weighting approach to evaluate the energy and climate policy. The proposed approach is akin to the analytic hierarchy process, which consists of pairwise comparisons, consistency verification, and criteria prioritization. In the approach, stakeholders and experts in the energy policy field are incorporated in the evaluation process by providing an interactive mean with verbal, numerical, and visual representation of their preferences. A total of 14 evaluation criteria were considered and classified into four objectives, such as climate change mitigation, energy effectiveness, socioeconomic, and competitiveness and technology. Finally, Borge Hess applied the stochastic frontier analysis approach to analyze the impact of various business strategies, including acquisition, holding structures, and joint ventures, on a firm’s efficiency within a sample of 47 natural gas transmission pipelines in the USA from 1996 to 2005. The author finds that there were no significant changes in the firm’s efficiency by an acquisition, and there is a weak evidence for efficiency improvements caused by the new shareholder. Besides, the author discovers that parent companies appear not to influence a subsidiary’s efficiency positively. In addition, the analysis shows a negative impact of a joint venture on technical efficiency of the pipeline company. To conclude, we are grateful to all the authors for their contribution, and all the reviewers for their constructive comments, which made this special issue possible. We hope that this issue would contribute significantly to performance improvement of the energy sector.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evaluation and selection of industrial projects before investment decision is customarily done using marketing, technical and financial information. Subsequently, environmental impact assessment and social impact assessment are carried out mainly to satisfy the statutory agencies. Because of stricter environment regulations in developed and developing countries, quite often impact assessment suggests alternate sites, technologies, designs, and implementation methods as mitigating measures. This causes considerable delay to complete project feasibility analysis and selection as complete analysis requires to be taken up again and again till the statutory regulatory authority approves the project. Moreover, project analysis through above process often results sub-optimal project as financial analysis may eliminate better options, as more environment friendly alternative will always be cost intensive. In this circumstance, this study proposes a decision support system, which analyses projects with respect to market, technicalities, and social and environmental impact in an integrated framework using analytic hierarchy process, a multiple-attribute decision-making technique. This not only reduces duration of project evaluation and selection, but also helps select optimal project for the organization for sustainable development. The entire methodology has been applied to a cross-country oil pipeline project in India and its effectiveness has been demonstrated. © 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Supplier evaluation and selection problem has been studied extensively. Various decision making approaches have been proposed to tackle the problem. In contemporary supply chain management, the performance of potential suppliers is evaluated against multiple criteria rather than considering a single factor-cost. This paper reviews the literature of the multi-criteria decision making approaches for supplier evaluation and selection. Related articles appearing in the international journals from 2000 to 2008 are gathered and analyzed so that the following three questions can be answered: (i) Which approaches were prevalently applied? (ii) Which evaluating criteria were paid more attention to? (iii) Is there any inadequacy of the approaches? Based on the inadequacy, if any, some improvements and possible future work are recommended. This research not only provides evidence that the multi-criteria decision making approaches are better than the traditional cost-based approach, but also aids the researchers and decision makers in applying the approaches effectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three novel solar thermal collector concepts derived from the Linear Fresnel Reflector (LFR) are developed and evaluated through a multi-criteria decision-making methodology, comprising the following techniques: Quality Function Deployment (QFD), the Analytical Hierarchy Process (AHP) and the Pugh selection matrix. Criteria are specified by technical and customer requirements gathered from Gujarat, India. The concepts are compared to a standard LFR for reference, and as a result, a novel 'Elevation Linear Fresnel Reflector' (ELFR) concept using elevating mirrors is selected. A detailed version of this concept is proposed and compared against two standard LFR configurations, one using constant and the other using variable horizontal mirror spacing. Annual performance is analysed for a typical meteorological year. Financial assessment is made through the construction of a prototype. The novel LFR has an annual optical efficiency of 49% and increases exergy by 13-23%. Operational hours above a target temperature of 300 C are increased by 9-24%. A 17% reduction in land usage is also achievable. However, the ELFR suffers from additional complexity and a 16-28% increase in capital cost. It is concluded that this novel design is particularly promising for industrial applications and locations with restricted land availability or high land costs. The decision analysis methodology adopted is considered to have a wider potential for applications in the fields of renewable energy and sustainable design. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Integrated supplier selection and order allocation is an important decision for both designing and operating supply chains. This decision is often influenced by the concerned stakeholders, suppliers, plant operators and customers in different tiers. As firms continue to seek competitive advantage through supply chain design and operations they aim to create optimized supply chains. This calls for on one hand consideration of multiple conflicting criteria and on the other hand consideration of uncertainties of demand and supply. Although there are studies on supplier selection using advanced mathematical models to cover a stochastic approach, multiple criteria decision making techniques and multiple stakeholder requirements separately, according to authors' knowledge there is no work that integrates these three aspects in a common framework. This paper proposes an integrated method for dealing with such problems using a combined Analytic Hierarchy Process-Quality Function Deployment (AHP-QFD) and chance constrained optimization algorithm approach that selects appropriate suppliers and allocates orders optimally between them. The effectiveness of the proposed decision support system has been demonstrated through application and validation in the bioenergy industry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Offshore oil and gas pipelines are vulnerable to environment as any leak and burst in pipelines cause oil/gas spill resulting in huge negative Impacts on marine lives. Breakdown maintenance of these pipelines is also cost-intensive and time-consuming resulting in huge tangible and intangible loss to the pipeline operators. Pipelines health monitoring and integrity analysis have been researched a lot for successful pipeline operations and risk-based maintenance model is one of the outcomes of those researches. This study develops a risk-based maintenance model using a combined multiple-criteria decision-making and weight method for offshore oil and gas pipelines in Thailand with the active participation of experienced executives. The model's effectiveness has been demonstrated through real life application on oil and gas pipelines in the Gulf of Thailand. Practical implications. Risk-based inspection and maintenance methodology is particularly important for oil pipelines system, as any failure in the system will not only affect productivity negatively but also has tremendous negative environmental impact. The proposed model helps the pipelines operators to analyze the health of pipelines dynamically, to select specific inspection and maintenance method for specific section in line with its probability and severity of failure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose - The purpose of the paper is to the identify risk factors, which affect oil and gas construction projects in Vietnam and derive risk responses. Design/methodology/approach - Questionnaire survey was conducted with the involvement of project executives of PetroVietnam and statistical analysis was carried out in order to identify the major project risks. Subsequently, mitigating measures were derived using informal interviews with the various levels of management of PetroVietnam. Findings - Bureaucratic government system and long project approval procedures, poor design, incompetence of project team, inadequate tendering practices, and late internal approval processes from the owner were identified as major risks. The executives suggested various strategies to mitigate the identified risks. Reforming the government system, effective partnership with foreign collaborators, training project executives, implementing contractor evaluation using multiple criteria decision-making technique, and enhancing authorities of project people were suggested as viable approaches. Practical implications - The improvement measures as derived in this study would improve chances of project success in the oil and gas industry in Vietnam. Originality/value - There are several risk management studies on managing projects in developing countries. However, as risk factors vary considerably across industry and countries, the study of risk management for successful projects in the oil and gas industry in Vietnam is unique and has tremendous importance for effective project management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Petroleum pipelines are the nervous system of the oil industry, as this transports crude oil from sources to refineries and petroleum products from refineries to demand points. Therefore, the efficient operation of these pipelines determines the effectiveness of the entire business. Pipeline route selection plays a major role when designing an effective pipeline system, as the health of the pipeline depends on its terrain. The present practice of route selection for petroleum pipelines is governed by factors such as the shortest distance, constructability, minimal effects on the environment, and approachability. Although this reduces capital expenditure, it often proves to be uneconomical when life cycle costing is considered. This study presents a route selection model with the application of an Analytic Hierarchy Process (AHP), a multiple attribute decision making technique. AHP considers all the above factors along with the operability and maintainability factors interactively. This system has been demonstrated here through a case study of pipeline route selection, from an Indian perspective. A cost-benefit comparison of the shortest route (conventionally selected) and optimal route establishes the effectiveness of the model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research project has developed a novel decision support system using Geographical Information Systems and Multi Criteria Decision Analysis and used it to develop and evaluate energy-from-waste policy options. The system was validated by applying it to the UK administrative areas of Cornwall and Warwickshire. Different strategies have been defined by the size and number of the facilities, as well as the technology chosen. Using sensitivity on the results from the decision support system, it was found that key decision criteria included those affected by cost, energy efficiency, transport impacts and air/dioxin emissions. The conclusions of this work are that distributed small-scale energy-from-waste facilities score most highly overall and that scale is more important than technology design in determining overall policy impact. This project makes its primary contribution to energy-from-waste planning by its development of a Decision Support System that can be used to assist waste disposal authorities to identify preferred energy-from-waste options that have been tailored specifically to the socio-geographic characteristics of their jurisdictional areas. The project also highlights the potential of energy-from-waste policies that are seldom given enough attention to in the UK, namely those of a smaller-scale and distributed nature that often have technology designed specifically to cater for this market.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper explores the use of the optimization procedures in SAS/OR software with application to the contemporary logistics distribution network design using an integrated multiple criteria decision making approach. Unlike the traditional optimization techniques, the proposed approach, combining analytic hierarchy process (AHP) and goal programming (GP), considers both quantitative and qualitative factors. In the integrated approach, AHP is used to determine the relative importance weightings or priorities of alternative warehouses with respect to both deliverer oriented and customer oriented criteria. Then, a GP model incorporating the constraints of system, resource, and AHP priority is formulated to select the best set of warehouses without exceeding the limited available resources. To facilitate the use of integrated multiple criteria decision making approach by SAS users, an ORMCDM code was implemented in the SAS programming language. The SAS macro developed in this paper selects the chosen variables from a SAS data file and constructs sets of linear programming models based on the selected GP model. An example is given to illustrate how one could use the code to design the logistics distribution network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bioenergy schemes are multi-faceted and complex by nature, with many available raw material supplies and technical options and a diverse set of stakeholders holding a raft of conflicting opinions. To develop and operate a successful scheme there are many requirements that should be considered and satisfied. This paper provides a review of those academic works attempting to deal with problems arising within the bioenergy sector using multi-criteria decision-making (MCDM) methods. These methods are particularly suitable to bioenergy given its multi-faceted nature but could be equally relevant to other energy conversion technologies. Related articles appearing in the international journals from 2000 to 2010 are gathered and analysed so that the following two questions can be answered. (i) Which methods are the most popular? (ii) Which problems attract the most attention? The review finds that optimisation methods are most popular with methods choosing between few alternatives being used in 44% of reviewed papers and methods choosing between many alternatives being used in 28%. The most popular application area was to technology selection with 27% of reviewed papers followed by policy decisions with 18%. © 2012 Elsevier Ltd.