24 resultados para Multidimensional projection

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is a study of the generation of topographic mappings - dimension reducing transformations of data that preserve some element of geometric structure - with feed-forward neural networks. As an alternative to established methods, a transformational variant of Sammon's method is proposed, where the projection is effected by a radial basis function neural network. This approach is related to the statistical field of multidimensional scaling, and from that the concept of a 'subjective metric' is defined, which permits the exploitation of additional prior knowledge concerning the data in the mapping process. This then enables the generation of more appropriate feature spaces for the purposes of enhanced visualisation or subsequent classification. A comparison with established methods for feature extraction is given for data taken from the 1992 Research Assessment Exercise for higher educational institutions in the United Kingdom. This is a difficult high-dimensional dataset, and illustrates well the benefit of the new topographic technique. A generalisation of the proposed model is considered for implementation of the classical multidimensional scaling (¸mds}) routine. This is related to Oja's principal subspace neural network, whose learning rule is shown to descend the error surface of the proposed ¸mds model. Some of the technical issues concerning the design and training of topographic neural networks are investigated. It is shown that neural network models can be less sensitive to entrapment in the sub-optimal global minima that badly affect the standard Sammon algorithm, and tend to exhibit good generalisation as a result of implicit weight decay in the training process. It is further argued that for ideal structure retention, the network transformation should be perfectly smooth for all inter-data directions in input space. Finally, there is a critique of optimisation techniques for topographic mappings, and a new training algorithm is proposed. A convergence proof is given, and the method is shown to produce lower-error mappings more rapidly than previous algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multidimensional compound optimization is a new paradigm in the drug discovery process, yielding efficiencies during early stages and reducing attrition in the later stages of drug development. The success of this strategy relies heavily on understanding this multidimensional data and extracting useful information from it. This paper demonstrates how principled visualization algorithms can be used to understand and explore a large data set created in the early stages of drug discovery. The experiments presented are performed on a real-world data set comprising biological activity data and some whole-molecular physicochemical properties. Data visualization is a popular way of presenting complex data in a simpler form. We have applied powerful principled visualization methods, such as generative topographic mapping (GTM) and hierarchical GTM (HGTM), to help the domain experts (screening scientists, chemists, biologists, etc.) understand and draw meaningful decisions. We also benchmark these principled methods against relatively better known visualization approaches, principal component analysis (PCA), Sammon's mapping, and self-organizing maps (SOMs), to demonstrate their enhanced power to help the user visualize the large multidimensional data sets one has to deal with during the early stages of the drug discovery process. The results reported clearly show that the GTM and HGTM algorithms allow the user to cluster active compounds for different targets and understand them better than the benchmarks. An interactive software tool supporting these visualization algorithms was provided to the domain experts. The tool facilitates the domain experts by exploration of the projection obtained from the visualization algorithms providing facilities such as parallel coordinate plots, magnification factors, directional curvatures, and integration with industry standard software. © 2006 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been argued that a single two-dimensional visualization plot may not be sufficient to capture all of the interesting aspects of complex data sets, and therefore a hierarchical visualization system is desirable. In this paper we extend an existing locally linear hierarchical visualization system PhiVis ¸iteBishop98a in several directions: bf(1) We allow for em non-linear projection manifolds. The basic building block is the Generative Topographic Mapping. bf(2) We introduce a general formulation of hierarchical probabilistic models consisting of local probabilistic models organized in a hierarchical tree. General training equations are derived, regardless of the position of the model in the tree. bf(3) Using tools from differential geometry we derive expressions for local directional curvatures of the projection manifold. Like PhiVis, our system is statistically principled and is built interactively in a top-down fashion using the EM algorithm. It enables the user to interactively highlight those data in the parent visualization plot which are captured by a child model. We also incorporate into our system a hierarchical, locally selective representation of magnification factors and directional curvatures of the projection manifolds. Such information is important for further refinement of the hierarchical visualization plot, as well as for controlling the amount of regularization imposed on the local models. We demonstrate the principle of the approach on a toy data set and apply our system to two more complex 12- and 19-dimensional data sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In data visualization, characterizing local geometric properties of non-linear projection manifolds provides the user with valuable additional information that can influence further steps in the data analysis. We take advantage of the smooth character of GTM projection manifold and analytically calculate its local directional curvatures. Curvature plots are useful for detecting regions where geometry is distorted, for changing the amount of regularization in non-linear projection manifolds, and for choosing regions of interest when constructing detailed lower-level visualization plots.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been argued that a single two-dimensional visualization plot may not be sufficient to capture all of the interesting aspects of complex data sets, and therefore a hierarchical visualization system is desirable. In this paper we extend an existing locally linear hierarchical visualization system PhiVis ¸iteBishop98a in several directions: bf(1) We allow for em non-linear projection manifolds. The basic building block is the Generative Topographic Mapping (GTM). bf(2) We introduce a general formulation of hierarchical probabilistic models consisting of local probabilistic models organized in a hierarchical tree. General training equations are derived, regardless of the position of the model in the tree. bf(3) Using tools from differential geometry we derive expressions for local directional curvatures of the projection manifold. Like PhiVis, our system is statistically principled and is built interactively in a top-down fashion using the EM algorithm. It enables the user to interactively highlight those data in the ancestor visualization plots which are captured by a child model. We also incorporate into our system a hierarchical, locally selective representation of magnification factors and directional curvatures of the projection manifolds. Such information is important for further refinement of the hierarchical visualization plot, as well as for controlling the amount of regularization imposed on the local models. We demonstrate the principle of the approach on a toy data set and apply our system to two more complex 12- and 18-dimensional data sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the problem of illusory or artefactual structure from the visualisation of high-dimensional structureless data. In particular we examine the role of the distance metric in the use of topographic mappings based on the statistical field of multidimensional scaling. We show that the use of a squared Euclidean metric (i.e. the SSTRESs measure) gives rise to an annular structure when the input data is drawn from a high-dimensional isotropic distribution, and we provide a theoretical justification for this observation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whereas projection of self-attributes to ingroups is ubiquitous, projection of self-attributes to outgroups (outgroup projection) is an elusive phenomenon. Two experiments examined the moderating effect of perceived intergroup relationship on outgroup projection and explored underlying mechanisms. Perceived cooperation versus competition between ingroup and outgroup was manipulated using fictitious (Experiment 1) or natural groups (Experiment 2). In both experiments, participants judged the outgroup as more similar to the self in the cooperation condition than in the competition condition. This effect was independent of recategorization, perceived intergroup similarity, and ingroup-to-outgroup projection. These studies demonstrate the very existence of outgroup projection and extend previous work on moderators of projection from self to groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clustering techniques such as k-means and hierarchical clustering are commonly used to analyze DNA microarray derived gene expression data. However, the interactions between processes underlying the cell activity suggest that the complexity of the microarray data structure may not be fully represented with discrete clustering methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been argued that a single two-dimensional visualization plot may not be sufficient to capture all of the interesting aspects of complex data sets, and therefore a hierarchical visualization system is desirable. In this paper we extend an existing locally linear hierarchical visualization system PhiVis (Bishop98a) in several directions: 1. We allow for em non-linear projection manifolds. The basic building block is the Generative Topographic Mapping. 2. We introduce a general formulation of hierarchical probabilistic models consisting of local probabilistic models organized in a hierarchical tree. General training equations are derived, regardless of the position of the model in the tree. 3. Using tools from differential geometry we derive expressions for local directionalcurvatures of the projection manifold. Like PhiVis, our system is statistically principled and is built interactively in a top-down fashion using the EM algorithm. It enables the user to interactively highlight those data in the parent visualization plot which are captured by a child model.We also incorporate into our system a hierarchical, locally selective representation of magnification factors and directional curvatures of the projection manifolds. Such information is important for further refinement of the hierarchical visualization plot, as well as for controlling the amount of regularization imposed on the local models. We demonstrate the principle of the approach on a toy data set andapply our system to two more complex 12- and 19-dimensional data sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A very fast heuristic iterative method of projection on simplicial cones is presented. It consists in solving two linear systems at each step of the iteration. The extensive experiments indicate that the method furnishes the exact solution in more then 99.7 percent of the cases. The average number of steps is 5.67 (we have not found any examples which required more than 13 steps) and the relative number of steps with respect to the dimension decreases dramatically. Roughly speaking, for high enough dimensions the absolute number of steps is independent of the dimension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The density of senile plaques (SP) and cellular neurofibrillary tabgles (NFT) revealed by the Glees and Gallyas stains; and beta/A4 deposits revealed by immunocytochemical staining, was estimated in the hippocampus and adjacent gyri in Alzheimer's disease (AD). Stepwise multiple regression was used to detemine whether the density of cellular NFT was related to the density of SP or beta/A4 deposits totalled over the projection sites. Cellular NFT density was only weakly correlated with the density of Glees SP and beta/A4 deposits at some of the projection sites. However, beta/A4 deposit density in a tissue was strongly correlated with the density of beta/A4 deposits at the projection sites suggesting that the lesions could spread through the brain. Hence, although there is a strong correlation between the density of beta/A4 deposits in different parts of the hippocampal formation there is little association between SP or beta/A4 and cellular NFT. These results do not provide strong evidence that beta/A4 protein is the cause of the neuritc changes in AD.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this chapter we present the relevant mathematical background to address two well defined signal and image processing problems. Namely, the problem of structured noise filtering and the problem of interpolation of missing data. The former is addressed by recourse to oblique projection based techniques whilst the latter, which can be considered equivalent to impulsive noise filtering, is tackled by appropriate interpolation methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Across the literature researchers agree that the concept of mentoring results in positive outcomes for both mentors and mentees alike (Enrich et al, 2004). From a pedagogical perspective, student focused mentoring activities in Higher Education are generally perceived to comprise dyadic or triadic relationships that encapsulate a diverse range of learning strategies and/or support mechanisms. Whilst there exists a significant amount of literature regarding the wider value of Peer Mentoring in Higher Education, there remains a notable gap in knowledge about the value of such programmes in enhancing the first year undergraduate experience and thus promoting a smooth transition to University. Using the emergent study findings of a large international project, a multidimensional conceptual framework bringing together the theoretical, conceptual and contextual determinants of Peer Mentoring is proposed. This framework makes a distinctive contribution to current pedagogical theory and practice – particularly in relation to the first year experience.