26 resultados para Multi objective optimizations (MOO)
em Aston University Research Archive
Resumo:
Transportation service operators are witnessing a growing demand for bi-directional movement of goods. Given this, the following thesis considers an extension to the vehicle routing problem (VRP) known as the delivery and pickup transportation problem (DPP), where delivery and pickup demands may occupy the same route. The problem is formulated here as the vehicle routing problem with simultaneous delivery and pickup (VRPSDP), which requires the concurrent service of the demands at the customer location. This formulation provides the greatest opportunity for cost savings for both the service provider and recipient. The aims of this research are to propose a new theoretical design to solve the multi-objective VRPSDP, provide software support for the suggested design and validate the method through a set of experiments. A new real-life based multi-objective VRPSDP is studied here, which requires the minimisation of the often conflicting objectives: operated vehicle fleet size, total routing distance and the maximum variation between route distances (workload variation). The former two objectives are commonly encountered in the domain and the latter is introduced here because it is essential for real-life routing problems. The VRPSDP is defined as a hard combinatorial optimisation problem, therefore an approximation method, Simultaneous Delivery and Pickup method (SDPmethod) is proposed to solve it. The SDPmethod consists of three phases. The first phase constructs a set of diverse partial solutions, where one is expected to form part of the near-optimal solution. The second phase determines assignment possibilities for each sub-problem. The third phase solves the sub-problems using a parallel genetic algorithm. The suggested genetic algorithm is improved by the introduction of a set of tools: genetic operator switching mechanism via diversity thresholds, accuracy analysis tool and a new fitness evaluation mechanism. This three phase method is proposed to address the shortcoming that exists in the domain, where an initial solution is built only then to be completely dismantled and redesigned in the optimisation phase. In addition, a new routing heuristic, RouteAlg, is proposed to solve the VRPSDP sub-problem, the travelling salesman problem with simultaneous delivery and pickup (TSPSDP). The experimental studies are conducted using the well known benchmark Salhi and Nagy (1999) test problems, where the SDPmethod and RouteAlg solutions are compared with the prominent works in the VRPSDP domain. The SDPmethod has demonstrated to be an effective method for solving the multi-objective VRPSDP and the RouteAlg for the TSPSDP.
Resumo:
To solve multi-objective problems, multiple reward signals are often scalarized into a single value and further processed using established single-objective problem solving techniques. While the field of multi-objective optimization has made many advances in applying scalarization techniques to obtain good solution trade-offs, the utility of applying these techniques in the multi-objective multi-agent learning domain has not yet been thoroughly investigated. Agents learn the value of their decisions by linearly scalarizing their reward signals at the local level, while acceptable system wide behaviour results. However, the non-linear relationship between weighting parameters of the scalarization function and the learned policy makes the discovery of system wide trade-offs time consuming. Our first contribution is a thorough analysis of well known scalarization schemes within the multi-objective multi-agent reinforcement learning setup. The analysed approaches intelligently explore the weight-space in order to find a wider range of system trade-offs. In our second contribution, we propose a novel adaptive weight algorithm which interacts with the underlying local multi-objective solvers and allows for a better coverage of the Pareto front. Our third contribution is the experimental validation of our approach by learning bi-objective policies in self-organising smart camera networks. We note that our algorithm (i) explores the objective space faster on many problem instances, (ii) obtained solutions that exhibit a larger hypervolume, while (iii) acquiring a greater spread in the objective space.
Resumo:
Market mechanisms are a means by which resources in contention can be allocated between contending parties, both in human economies and those populated by software agents. Designing such mechanisms has traditionally been carried out by hand, and more recently by automation. Assessing these mechanisms typically involves them being evaluated with respect to multiple conflicting objectives, which can often be nonlinear, noisy, and expensive to compute. For typical performance objectives, it is known that designed mechanisms often fall short on being optimal across all objectives simultaneously. However, in all previous automated approaches, either only a single objective is considered, or else the multiple performance objectives are combined into a single objective. In this paper we do not aggregate objectives, instead considering a direct, novel application of multi-objective evolutionary algorithms (MOEAs) to the problem of automated mechanism design. This allows the automatic discovery of trade-offs that such objectives impose on mechanisms. We pose the problem of mechanism design, specifically for the class of linear redistribution mechanisms, as a naturally existing multi-objective optimisation problem. We apply a modified version of NSGA-II in order to design mechanisms within this class, given economically relevant objectives such as welfare and fairness. This application of NSGA-II exposes tradeoffs between objectives, revealing relationships between them that were otherwise unknown for this mechanism class. The understanding of the trade-off gained from the application of MOEAs can thus help practitioners with an insightful application of discovered mechanisms in their respective real/artificial markets.
Resumo:
Heterogeneous multi-core FPGAs contain different types of cores, which can improve efficiency when used with an effective online task scheduler. However, it is not easy to find the right cores for tasks when there are multiple objectives or dozens of cores. Inappropriate scheduling may cause hot spots which decrease the reliability of the chip. Given that, our research builds a simulating platform to evaluate all kinds of scheduling algorithms on a variety of architectures. On this platform, we provide an online scheduler which uses multi-objective evolutionary algorithm (EA). Comparing the EA and current algorithms such as Predictive Dynamic Thermal Management (PDTM) and Adaptive Temperature Threshold Dynamic Thermal Management (ATDTM), we find some drawbacks in previous work. First, current algorithms are overly dependent on manually set constant parameters. Second, those algorithms neglect optimization for heterogeneous architectures. Third, they use single-objective methods, or use linear weighting method to convert a multi-objective optimization into a single-objective optimization. Unlike other algorithms, the EA is adaptive and does not require resetting parameters when workloads switch from one to another. EAs also improve performance when used on heterogeneous architecture. A efficient Pareto front can be obtained with EAs for the purpose of multiple objectives.
Resumo:
Lack of discrimination power and poor weight dispersion remain major issues in Data Envelopment Analysis (DEA). Since the initial multiple criteria DEA (MCDEA) model developed in the late 1990s, only goal programming approaches; that is, the GPDEA-CCR and GPDEA-BCC were introduced for solving the said problems in a multi-objective framework. We found GPDEA models to be invalid and demonstrate that our proposed bi-objective multiple criteria DEA (BiO-MCDEA) outperforms the GPDEA models in the aspects of discrimination power and weight dispersion, as well as requiring less computational codes. An application of energy dependency among 25 European Union member countries is further used to describe the efficacy of our approach. © 2013 Elsevier B.V. All rights reserved.
Resumo:
The increasing number of victims from disasters in recent years results in several challenges for authorities aiming to protect and provide support to affected people. Humanitarian logistics represents one of the most important fields during preparedness and response in cases of disaster, seeking to provide relief, information and services to disaster victims. However, on top of the challenges of logistical activities, the successful completion of operations depends to a large extent on coordination. This is particularly important for developing countries, where disasters occur very often and resources are even scarcer. This paper assumes a multi-agency approach to disaster preparedness that combines geographical information systems (GIS) and multi-objective optimization. The purpose of the tool is to determine the location of emergency facilities, stock prepositioning and distribution allocation for floods. We illustrate the application and the results using a case study centred on Acapulco, México.
Resumo:
Group decision making is the study of identifying and selecting alternatives based on the values and preferences of the decision maker. Making a decision implies that there are several alternative choices to be considered. This paper uses the concept of Data Envelopment Analysis to introduce a new mathematical method for selecting the best alternative in a group decision making environment. The introduced model is a multi-objective function which is converted into a multi-objective linear programming model from which the optimal solution is obtained. A numerical example shows how the new model can be applied to rank the alternatives or to choose a subset of the most promising alternatives.
Resumo:
This paper introduces a new mathematical method for improving the discrimination power of data envelopment analysis and to completely rank the efficient decision-making units (DMUs). Fuzzy concept is utilised. For this purpose, first all DMUs are evaluated with the CCR model. Thereafter, the resulted weights for each output are considered as fuzzy sets and are then converted to fuzzy numbers. The introduced model is a multi-objective linear model, endpoints of which are the highest and lowest of the weighted values. An added advantage of the model is its ability to handle the infeasibility situation sometimes faced by previously introduced models.
Resumo:
Data envelopment analysis (DEA) as introduced by Charnes, Cooper, and Rhodes (1978) is a linear programming technique that has widely been used to evaluate the relative efficiency of a set of homogenous decision making units (DMUs). In many real applications, the input-output variables cannot be precisely measured. This is particularly important in assessing efficiency of DMUs using DEA, since the efficiency score of inefficient DMUs are very sensitive to possible data errors. Hence, several approaches have been proposed to deal with imprecise data. Perhaps the most popular fuzzy DEA model is based on a-cut. One drawback of the a-cut approach is that it cannot include all information about uncertainty. This paper aims to introduce an alternative linear programming model that can include some uncertainty information from the intervals within the a-cut approach. We introduce the concept of "local a-level" to develop a multi-objective linear programming to measure the efficiency of DMUs under uncertainty. An example is given to illustrate the use of this method.
Resumo:
In this paper the effects of introducing novelty search in evolutionary art are explored. Our algorithm combines fitness and novelty metrics to frame image evolution as a multi-objective optimisation problem, promoting the creation of images that are both suitable and diverse. The method is illustrated by using two evolutionary art engines for the evolution of figurative objects and context free design grammars. The results demonstrate the ability of the algorithm to obtain a larger set of fit images compared to traditional fitness-based evolution, regardless of the engine used.
Resumo:
When visual sensor networks are composed of cameras which can adjust the zoom factor of their own lens, one must determine the optimal zoom levels for the cameras, for a given task. This gives rise to an important trade-off between the overlap of the different cameras’ fields of view, providing redundancy, and image quality. In an object tracking task, having multiple cameras observe the same area allows for quicker recovery, when a camera fails. In contrast having narrow zooms allow for a higher pixel count on regions of interest, leading to increased tracking confidence. In this paper we propose an approach for the self-organisation of redundancy in a distributed visual sensor network, based on decentralised multi-objective online learning using only local information to approximate the global state. We explore the impact of different zoom levels on these trade-offs, when tasking omnidirectional cameras, having perfect 360-degree view, with keeping track of a varying number of moving objects. We further show how employing decentralised reinforcement learning enables zoom configurations to be achieved dynamically at runtime according to an operator’s preference for maximising either the proportion of objects tracked, confidence associated with tracking, or redundancy in expectation of camera failure. We show that explicitly taking account of the level of overlap, even based only on local knowledge, improves resilience when cameras fail. Our results illustrate the trade-off between maintaining high confidence and object coverage, and maintaining redundancy, in anticipation of future failure. Our approach provides a fully tunable decentralised method for the self-organisation of redundancy in a changing environment, according to an operator’s preferences.
Resumo:
One of the major challenges in measuring efficiency in terms of resources and outcomes is the assessment of the evolution of units over time. Although Data Envelopment Analysis (DEA) has been applied for time series datasets, DEA models, by construction, form the reference set for inefficient units (lambda values) based on their distance from the efficient frontier, that is, in a spatial manner. However, when dealing with temporal datasets, the proximity in time between units should also be taken into account, since it reflects the structural resemblance among time periods of a unit that evolves. In this paper, we propose a two-stage spatiotemporal DEA approach, which captures both the spatial and temporal dimension through a multi-objective programming model. In the first stage, DEA is solved iteratively extracting for each unit only previous DMUs as peers in its reference set. In the second stage, the lambda values derived from the first stage are fed to a Multiobjective Mixed Integer Linear Programming model, which filters peers in the reference set based on weights assigned to the spatial and temporal dimension. The approach is demonstrated on a real-world example drawn from software development.
Resumo:
This book constitutes the refereed proceedings of the 14th International Conference on Parallel Problem Solving from Nature, PPSN 2016, held in Edinburgh, UK, in September 2016. The total of 93 revised full papers were carefully reviewed and selected from 224 submissions. The meeting began with four workshops which offered an ideal opportunity to explore specific topics in intelligent transportation Workshop, landscape-aware heuristic search, natural computing in scheduling and timetabling, and advances in multi-modal optimization. PPSN XIV also included sixteen free tutorials to give us all the opportunity to learn about new aspects: gray box optimization in theory; theory of evolutionary computation; graph-based and cartesian genetic programming; theory of parallel evolutionary algorithms; promoting diversity in evolutionary optimization: why and how; evolutionary multi-objective optimization; intelligent systems for smart cities; advances on multi-modal optimization; evolutionary computation in cryptography; evolutionary robotics - a practical guide to experiment with real hardware; evolutionary algorithms and hyper-heuristics; a bridge between optimization over manifolds and evolutionary computation; implementing evolutionary algorithms in the cloud; the attainment function approach to performance evaluation in EMO; runtime analysis of evolutionary algorithms: basic introduction; meta-model assisted (evolutionary) optimization. The papers are organized in topical sections on adaption, self-adaption and parameter tuning; differential evolution and swarm intelligence; dynamic, uncertain and constrained environments; genetic programming; multi-objective, many-objective and multi-level optimization; parallel algorithms and hardware issues; real-word applications and modeling; theory; diversity and landscape analysis.
Resumo:
Several parties (stakeholders) are involved in a construction project. The conventional Risk Management Process (RMP) manages risks from a single party perspective, which does not give adequate consideration to the needs of others. The objective of multi-party risk management is to assist decision-makers in managing risk systematically and most efficiently in a multi-party environment. Multi-party Risk Management Processes (MRMP) consist of risk identification, structuring, analysis and developing responses from all party perspectives. The MRMP has been applied to a cement plant construction project in Thailand to demonstrate its effectiveness.
Resumo:
This project has been undertaken for Hamworthy Hydraulics Limited. Its objective was to design and develop a controller package for a variable displacement, hydraulic pump for use mainly on mobile earth moving machinery. A survey was undertaken of control options used in practice and from this a design specification was formulated, the successful implementation of which would give Hamworthy an advantage over its competitors. Two different modes for the controller were envisaged. One consisted of using conventional hydro-mechanics and the other was based upon a microprocessor. To meet short term customer prototype requirements the first section of work was the realisation of the hydro-mechanical system. Mathematical models were made to evaluate controller stability and hence aid their design. The final package met the requirements of the specification and a single version could operate all sizes of variable displacement pumps in the Hamworthy range. The choice of controller options and combinations totalled twenty-four. The hydro-mechanical controller was complex and it was realised that a micro-processor system would allow all options to be implemented with just one design of hardware, thus greatly simplifying production. The final section of this project was to determine whether such a design was feasible. This entailed finding cheap, reliable transducers, using mathematical models to predict electro-hydraulic interface stability, testing such interfaces and finally incorporating a micro-processor in an interactive control loop. The study revealed that such a system was technically possible but it would cost 60% more than its hydro-mechanical counterpart. It was therefore concluded that, in the short term, for the markets considered, the hydro-mechanical design was the better solution. Regarding the micro-processor system the final conclusion was that, because the relative costs of the two systems are decreasing, the electro-hydraulic controller will gradually become more attractive and therefore Hamworthy should continue with its development.