4 resultados para Motori di ricerca, Search Engine Optimization, Google

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

For a submitted query to multiple search engines finding relevant results is an important task. This paper formulates the problem of aggregation and ranking of multiple search engines results in the form of a minimax linear programming model. Besides the novel application, this study detects the most relevant information among a return set of ranked lists of documents retrieved by distinct search engines. Furthermore, two numerical examples aree used to illustrate the usefulness of the proposed approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Existing semantic search tools have been primarily designed to enhance the performance of traditional search technologies but with little support for ordinary end users who are not necessarily familiar with domain specific semantic data, ontologies, or SQL-like query languages. This paper presents SemSearch, a search engine, which pays special attention to this issue by providing several means to hide the complexity of semantic search from end users and thus make it easy to use and effective.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work contributes to the development of search engines that self-adapt their size in response to fluctuations in workload. Deploying a search engine in an Infrastructure as a Service (IaaS) cloud facilitates allocating or deallocating computational resources to or from the engine. In this paper, we focus on the problem of regrouping the metric-space search index when the number of virtual machines used to run the search engine is modified to reflect changes in workload. We propose an algorithm for incrementally adjusting the index to fit the varying number of virtual machines. We tested its performance using a custom-build prototype search engine deployed in the Amazon EC2 cloud, while calibrating the results to compensate for the performance fluctuations of the platform. Our experiments show that, when compared with computing the index from scratch, the incremental algorithm speeds up the index computation 2–10 times while maintaining a similar search performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research focuses on automatically adapting a search engine size in response to fluctuations in query workload. Deploying a search engine in an Infrastructure as a Service (IaaS) cloud facilitates allocating or deallocating computer resources to or from the engine. Our solution is to contribute an adaptive search engine that will repeatedly re-evaluate its load and, when appropriate, switch over to a dierent number of active processors. We focus on three aspects and break them out into three sub-problems as follows: Continually determining the Number of Processors (CNP), New Grouping Problem (NGP) and Regrouping Order Problem (ROP). CNP means that (in the light of the changes in the query workload in the search engine) there is a problem of determining the ideal number of processors p active at any given time to use in the search engine and we call this problem CNP. NGP happens when changes in the number of processors are determined and it must also be determined which groups of search data will be distributed across the processors. ROP is how to redistribute this data onto processors while keeping the engine responsive and while also minimising the switchover time and the incurred network load. We propose solutions for these sub-problems. For NGP we propose an algorithm for incrementally adjusting the index to t the varying number of virtual machines. For ROP we present an ecient method for redistributing data among processors while keeping the search engine responsive. Regarding the solution for CNP, we propose an algorithm determining the new size of the search engine by re-evaluating its load. We tested the solution performance using a custom-build prototype search engine deployed in the Amazon EC2 cloud. Our experiments show that when we compare our NGP solution with computing the index from scratch, the incremental algorithm speeds up the index computation 2{10 times while maintaining a similar search performance. The chosen redistribution method is 25% to 50% faster than other methods and reduces the network load around by 30%. For CNP we present a deterministic algorithm that shows a good ability to determine a new size of search engine. When combined, these algorithms give an adapting algorithm that is able to adjust the search engine size with a variable workload.