45 resultados para Motor Evoked Potential

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rectum has a unique physiological role as a sensory organ and differs in its afferent innervation from other gut organs that do not normally mediate conscious sensation. We compared the central processing of human esophageal, duodenal, and rectal sensation using cortical evoked potentials (CEP) in 10 healthy volunteers (age range 21-34 yr). Esophageal and duodenal CEP had similar morphology in all subjects, whereas rectal CEP had two different but reproducible morphologies. The rectal CEP latency to the first component P1 (69 ms) was shorter than both duodenal (123 ms; P = 0.008) and esophageal CEP latencies (106 ms; P = 0.004). The duodenal CEP amplitude of the P1-N1 component (5.0 µV) was smaller than that of the corresponding esophageal component (5.7 µV; P = 0.04) but similar to that of the corresponding rectal component (6.5 µV; P = 0.25). This suggests that rectal sensation is either mediated by faster-conducting afferent pathways or that there is a difference in the orientation or volume of cortical neurons representing the different gut organs. In conclusion, the physiological and anatomic differences between gut organs are reflected in differences in the characteristics of their afferent pathways and cortical processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transcranial magnetic stimulation (TMS) studies indicate that the observation of other people's actions influences the excitability of the observer's motor system. Motor evoked potential (MEP) amplitudes typically increase in muscles which would be active during the execution of the observed action. This 'motor resonance' effect is thought to result from activity in mirror neuron regions, which enhance the excitability of the primary motor cortex (M1) via cortico-cortical pathways. The importance of TMS intensity has not yet been recognised in this area of research. Low-intensity TMS predominately activates corticospinal neurons indirectly, whereas high-intensity TMS can directly activate corticospinal axons. This indicates that motor resonance effects should be more prominent when using low-intensity TMS. A related issue is that TMS is typically applied over a single optimal scalp position (OSP) to simultaneously elicit MEPs from several muscles. Whether this confounds results, due to differences in the manner that TMS activates spatially separate cortical representations, has not yet been explored. In the current study, MEP amplitudes, resulting from single-pulse TMS applied over M1, were recorded from the first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles during the observation of simple finger abductions. We tested if the TMS intensity (110% vs. 130% resting motor threshold) or stimulating position (FDI-OSP vs. ADM-OSP) influenced the magnitude of the motor resonance effects. Results showed that the MEP facilitation recorded in the FDI muscle during the observation of index-finger abductions was only detected using low-intensity TMS. In contrast, changes in the OSP had a negligible effect on the presence of motor resonance effects in either the FDI or ADM muscles. These findings support the hypothesis that MN activity enhances M1 excitability via cortico-cortical pathways and highlight a methodological framework by which the neural underpinnings of action observation can be further explored. © 2013 Loporto et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Visual field assessment is a core component of glaucoma diagnosis and monitoring, and the Standard Automated Perimetry (SAP) test is considered up until this moment, the gold standard of visual field assessment. Although SAP is a subjective assessment and has many pitfalls, it is being constantly used in the diagnosis of visual field loss in glaucoma. Multifocal visual evoked potential (mfVEP) is a newly introduced method used for visual field assessment objectively. Several analysis protocols have been tested to identify early visual field losses in glaucoma patients using the mfVEP technique, some were successful in detection of field defects, which were comparable to the standard SAP visual field assessment, and others were not very informative and needed more adjustment and research work. In this study, we implemented a novel analysis approach and evaluated its validity and whether it could be used effectively for early detection of visual field defects in glaucoma. OBJECTIVES: The purpose of this study is to examine the effectiveness of a new analysis method in the Multi-Focal Visual Evoked Potential (mfVEP) when it is used for the objective assessment of the visual field in glaucoma patients, compared to the gold standard technique. METHODS: 3 groups were tested in this study; normal controls (38 eyes), glaucoma patients (36 eyes) and glaucoma suspect patients (38 eyes). All subjects had a two standard Humphrey visual field HFA test 24-2 and a single mfVEP test undertaken in one session. Analysis of the mfVEP results was done using the new analysis protocol; the Hemifield Sector Analysis HSA protocol. Analysis of the HFA was done using the standard grading system. RESULTS: Analysis of mfVEP results showed that there was a statistically significant difference between the 3 groups in the mean signal to noise ratio SNR (ANOVA p<0.001 with a 95% CI). The difference between superior and inferior hemispheres in all subjects were all statistically significant in the glaucoma patient group 11/11 sectors (t-test p<0.001), partially significant 5/11 (t-test p<0.01) and no statistical difference between most sectors in normal group (only 1/11 was significant) (t-test p<0.9). sensitivity and specificity of the HAS protocol in detecting glaucoma was 97% and 86% respectively, while for glaucoma suspect were 89% and 79%. DISCUSSION: The results showed that the new analysis protocol was able to confirm already existing field defects detected by standard HFA, was able to differentiate between the 3 study groups with a clear distinction between normal and patients with suspected glaucoma; however the distinction between normal and glaucoma patients was especially clear and significant. CONCLUSION: The new HSA protocol used in the mfVEP testing can be used to detect glaucomatous visual field defects in both glaucoma and glaucoma suspect patient. Using this protocol can provide information about focal visual field differences across the horizontal midline, which can be utilized to differentiate between glaucoma and normal subjects. Sensitivity and specificity of the mfVEP test showed very promising results and correlated with other anatomical changes in glaucoma field loss.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: The purpose of this study was to examine the effectiveness of a new analysis method of mfVEP objective perimetry in the early detection of glaucomatous visual field defects compared to the gold standard technique. Methods and patients: Three groups were tested in this study; normal controls (38 eyes), glaucoma patients (36 eyes), and glaucoma suspect patients (38 eyes). All subjects underwent two standard 24-2 visual field tests: one with the Humphrey Field Analyzer and a single mfVEP test in one session. Analysis of the mfVEP results was carried out using the new analysis protocol: the hemifield sector analysis protocol. Results: Analysis of the mfVEP showed that the signal to noise ratio (SNR) difference between superior and inferior hemifields was statistically significant between the three groups (analysis of variance, P<0.001 with a 95% confidence interval, 2.82, 2.89 for normal group; 2.25, 2.29 for glaucoma suspect group; 1.67, 1.73 for glaucoma group). The difference between superior and inferior hemifield sectors and hemi-rings was statistically significant in 11/11 pair of sectors and hemi-rings in the glaucoma patients group (t-test P<0.001), statistically significant in 5/11 pairs of sectors and hemi-rings in the glaucoma suspect group (t-test P<0.01), and only 1/11 pair was statistically significant (t-test P<0.9). The sensitivity and specificity of the hemifield sector analysis protocol in detecting glaucoma was 97% and 86% respectively and 89% and 79% in glaucoma suspects. These results showed that the new analysis protocol was able to confirm existing visual field defects detected by standard perimetry, was able to differentiate between the three study groups with a clear distinction between normal patients and those with suspected glaucoma, and was able to detect early visual field changes not detected by standard perimetry. In addition, the distinction between normal and glaucoma patients was especially clear and significant using this analysis. Conclusion: The new hemifield sector analysis protocol used in mfVEP testing can be used to detect glaucomatous visual field defects in both glaucoma and glaucoma suspect patients. Using this protocol, it can provide information about focal visual field differences across the horizontal midline, which can be utilized to differentiate between glaucoma and normal subjects. The sensitivity and specificity of the mfVEP test showed very promising results and correlated with other anatomical changes in glaucomatous visual field loss. The intersector analysis protocol can detect early field changes not detected by the standard Humphrey Field Analyzer test. © 2013 Mousa et al, publisher and licensee Dove Medical Press Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CONCLUSIONS: The new HSA protocol used in the mfVEP testing can be applied to detect glaucomatous visual field defects in both glaucoma and glaucoma suspect patients. Using this protocol can provide information about focal visual field differences across the horizontal midline, which can be utilized to differentiate between glaucoma and normal subjects. Sensitivity and specificity of the mfVEP test showed very promising results and correlated with other anatomical changes in glaucoma field loss. PURPOSE: Multifocal visual evoked potential (mfVEP) is a newly introduced method used for objective visual field assessment. Several analysis protocols have been tested to identify early visual field losses in glaucoma patients using the mfVEP technique, some were successful in detection of field defects, which were comparable to the standard automated perimetry (SAP) visual field assessment, and others were not very informative and needed more adjustment and research work. In this study we implemented a novel analysis approach and evaluated its validity and whether it could be used effectively for early detection of visual field defects in glaucoma. METHODS: Three groups were tested in this study; normal controls (38 eyes), glaucoma patients (36 eyes) and glaucoma suspect patients (38 eyes). All subjects had a two standard Humphrey field analyzer (HFA) test 24-2 and a single mfVEP test undertaken in one session. Analysis of the mfVEP results was done using the new analysis protocol; the hemifield sector analysis (HSA) protocol. Analysis of the HFA was done using the standard grading system. RESULTS: Analysis of mfVEP results showed that there was a statistically significant difference between the three groups in the mean signal to noise ratio (ANOVA test, p < 0.001 with a 95% confidence interval). The difference between superior and inferior hemispheres in all subjects were statistically significant in the glaucoma patient group in all 11 sectors (t-test, p < 0.001), partially significant in 5 / 11 (t-test, p < 0.01), and no statistical difference in most sectors of the normal group (1 / 11 sectors was significant, t-test, p < 0.9). Sensitivity and specificity of the HSA protocol in detecting glaucoma was 97% and 86%, respectively, and for glaucoma suspect patients the values were 89% and 79%, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several analysis protocols have been tested to identify early visual field losses in glaucoma patients using the mfVEP technique, some were successful in detection of field defects, which were comparable to the standard SAP visual field assessment, and others were not very informative and needed more adjustment and research work. In this study we implemented a novel analysis approach and evaluated its validity and whether it could be used effectively for early detection of visual field defects in glaucoma. The purpose of this study is to examine the benefit of adding mfVEP hemifield Intersector analysis protocol to the standard HFA test when there is suspicious glaucomatous visual field loss. 3 groups were tested in this study; normal controls (38 eyes), glaucoma patients (36 eyes) and glaucoma suspect patients (38 eyes). All subjects had a two standard Humphrey visual field HFA test 24-2, optical coherence tomography of the optic nerve head, and a single mfVEP test undertaken in one session. Analysis of the mfVEP results was done using the new analysis protocol; the Hemifield Sector Analysis HSA protocol. The retinal nerve fibre (RNFL) thickness was recorded to identify subjects with suspicious RNFL loss. The hemifield Intersector analysis of mfVEP results showed that signal to noise ratio (SNR) difference between superior and inferior hemifields was statistically significant between the 3 groups (ANOVA p<0.001 with a 95% CI). The difference between superior and inferior hemispheres in all subjects were all statistically significant in the glaucoma patient group 11/11 sectors (t-test p<0.001), partially significant 5/11 in glaucoma suspect group (t-test p<0.01) and no statistical difference between most sectors in normal group (only 1/11 was significant) (t-test p<0.9). Sensitivity and specificity of the HSA protocol in detecting glaucoma was 97% and 86% respectively, while for glaucoma suspect were 89% and 79%. The use of SAP and mfVEP results in subjects with suspicious glaucomatous visual field defects, identified by low RNFL thickness, is beneficial in confirming early visual field defects. The new HSA protocol used in the mfVEP testing can be used to detect glaucomatous visual field defects in both glaucoma and glaucoma suspect patient. Using this protocol in addition to SAP analysis can provide information about focal visual field differences across the horizontal midline, and confirm suspicious field defects. Sensitivity and specificity of the mfVEP test showed very promising results and correlated with other anatomical changes in glaucoma field loss. The Intersector analysis protocol can detect early field changes not detected by standard HFA test.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background & Aims: Current models of visceral pain processing derived from metabolic brain imaging techniques fail to differentiate between exogenous (stimulus-dependent) and endogenous (non-stimulus-specific) neural activity. The aim of this study was to determine the spatiotemporal correlates of exogenous neural activity evoked by painful esophageal stimulation. Methods: In 16 healthy subjects (8 men; mean age, 30.2 ± 2.2 years), we recorded magnetoencephalographic responses to 2 runs of 50 painful esophageal electrical stimuli originating from 8 brain subregions. Subsequently, 11 subjects (6 men; mean age, 31.2 ± 1.8 years) had esophageal cortical evoked potentials recorded on a separate occasion by using similar experimental parameters. Results: Earliest cortical activity (P1) was recorded in parallel in the primary/secondary somatosensory cortex and posterior insula (∼85 ms). Significantly later activity was seen in the anterior insula (∼103 ms) and cingulate cortex (∼106 ms; P = .0001). There was no difference between the P1 latency for magnetoencephalography and cortical evoked potential (P = .16); however, neural activity recorded with cortical evoked potential was longer than with magnetoencephalography (P = .001). No sex differences were seen for psychophysical or neurophysiological measures. Conclusions: This study shows that exogenous cortical neural activity evoked by experimental esophageal pain is processed simultaneously in somatosensory and posterior insula regions. Activity in the anterior insula and cingulate - brain regions that process the affective aspects of esophageal pain - occurs significantly later than in the somatosensory regions, and no sex differences were observed with this experimental paradigm. Cortical evoked potential reflects the summation of cortical activity from these brain regions and has sufficient temporal resolution to separate exogenous and endogenous neural activity. © 2005 by the American Gastroenterological Association.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objective: Pharyngeal stimulation can induce remarkable increases in the excitability of swallowing motor cortex, which is associated with short-term improvements in swallowing behaviour in dysphagic stroke patients. However, the mechanism by which this input induces cortical change remains unclear. Our aims were to explore the stimulus-induced facilitation of the cortico-bulbar projections to swallowing musculature and examine how input from the pharynx interacts with swallowing motor cortex. Methods: In 8 healthy subjects, a transcranial magnetic stimulation (TMS) paired-pulse investigation was performed comprising a single conditioning electrical pharyngeal stimulus (pulse width 0.2 ms, 240 V) followed by cortical TMS at inter-stimulus intervals (ISI) of 10-100 ms. Pharyngeal sensory evoked potentials (PSEP) were also measured over the vertex. In 6 subjects whole-brain magnetoencephalography (MEG) was further acquired following pharyngeal stimulation. Results: TMS evoked pharyngeal motor evoked potentials were facilitated by the pharyngeal stimulus at ISI between 50 and 80 ms (Δ mean increase: 47±6%, P<0.05). This correlated with the peak latency of the P1 component of the PSEP (mean 79.6±8.5 ms). MEG confirmed that the equivalent P1 peak activities were localised to caudolateral sensory and motor cortices (BA 4, 1, 2). Conclusions: Facilitation of the cortico-bulbar pathway to pharyngeal stimulation relates to coincident afferent input to sensorimotor cortex. Significance: These findings have mechanistic importance on how pharyngeal stimulation may increase motor excitability and provide guidance on temporal windows for future manipulations of swallowing motor cortex. © 2004 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A decrease in the check size of a pattern shift stimulus increases the latency and amplitude of the visual evoked potential (VEP) P100. In addition, for a given check size, decreasing the size of the stimulus field increases the latency and amplitude of the P100. These results imply that the central regions of the retina make a significant contribution to the generation of the electrical P100. However, the corresponding magnetic P100m may have a different origin. We have studied the effects of check and field size on the P100m in five normal subjects using a DC-Squid, second-order gradiometer. Magnetic responses were recorded at the positive maximum of the P100m over the occipital scalp to six check sizes (10-100') presented in a large (13 degrees 34') and small (5 degrees 14') field and to a large check (100') presented in seven field sizes (1 degree 45' - 15 degrees 10'). No responses were recorded to any check size with a small field. Decreasing the check size presented in a large field increased latency of the P100m by approx. 30 ms while the amplitude of the response decreased with the largest reduction occurring between 70' and 12' checks. Using a large check, latency increased and amplitude decreased as the field size was reduced. The latency changes in response to check and field size were similar to those described for the VEP although the magnitudes of the magnetic changes were greater. Unlike the VEP, amplitude responses were maximal when large checks were presented in a large stimulus field. This suggests that regions outside the central retina make a more significant contribution to the visual evoked magnetic response than they do to the VEP, and that the P100m may be useful clinically in the study of diseases that affect the more peripheral regions of the retina.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The visual evoked magnetic response to half-field stimulation using pattern reversal was studied using a d.c. SQUID coupled to a second order gradiometer. The main component of the magnetic response consisted of a positive wave at around 100 ms (P100M). At the time this component was present the response to half-field stimulation consisted of an outgoing magnetic field contralateral and extending to the midline. When the left half field was stimulated the outgoing field was over the posterior right visual cortex and when the right half field was stimulated it was over the left anterior visual cortex. These findings would correctly identify a source located in the contralateral visual cortex. The orientation of the dipoles was not that previously assumed to explain the paradoxical lateralization of the visual evoked potential. The results are discussed in terms of both electrical and magnetic models of the calcarine fissure. © 1992.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The visual evoked magnetic response to half-field stimulation using pattern reversal was studied using a dc-SQUID coupled to a second-order gradiometer. The main component of the magnetic response consisted of a positive wave at around 100ms (P100M). At the same time this component was present the reponse to half-field stimulation consisted of an outgoing field contralateral and extending to the midline. When the left half-field was stimulates the outgoing field was over the posterior right visual cortex and when the right half field was stimulated it was over the left anterior visual cortex. These findings would correltly identify a source located in the contralateral visual cortex. The orientation of the dipoles was not that previously assumed to explain the paradoxical lateralization of the visual evoked potential. The results are discussed in terms of both electrical and magnetic models of the calcarine fissure.