62 resultados para Motor Cortical Areas

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human swallowing represents a complex highly coordinated sensorimotor function whose functional neuroanatomy remains incompletely understood. Specifically, previous studies have failed to delineate the temporo-spatial sequence of those cerebral loci active during the differing phases of swallowing. We therefore sought to define the temporal characteristics of cortical activity associated with human swallowing behaviour using a novel application of magnetoencephalography (MEG). In healthy volunteers (n = 8, aged 28-45), 151-channel whole cortex MEG was recorded during the conditions of oral water infusion, volitional wet swallowing (5 ml bolus), tongue thrust or rest. Each condition lasted for 5 s and was repeated 20 times. Synthetic aperture magnetometry (SAM) analysis was performed on each active epoch and compared to rest. Temporal sequencing of brain activations utilised time-frequency wavelet plots of regions selected using virtual electrodes. Following SAM analysis, water infusion preferentially activated the caudolateral sensorimotor cortex, whereas during volitional swallowing and tongue movement, the superior sensorimotor cortex was more strongly active. Time-frequency wavelet analysis indicated that sensory input from the tongue simultaneously activated caudolateral sensorimotor and primary gustatory cortex, which appeared to prime the superior sensory and motor cortical areas, involved in the volitional phase of swallowing. Our data support the existence of a temporal synchrony across the whole cortical swallowing network, with sensory input from the tongue being critical. Thus, the ability to non-invasively image this network, with intra-individual and high temporal resolution, provides new insights into the brain processing of human swallowing. © 2004 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Attention defines our mental ability to select and respond to stimuli, internal or external, on the basis of behavioural goals in the presence of competing, behaviourally irrelevant, stimuli. The frontal and parietal cortices are generally agreed to be involved with attentional processing, in what is termed the 'fronto-parietal' network. The left parietal cortex has been seen as the site for temporal attentional processing, whereas the right parietal cortex has been seen as the site for spatial attentional processing. There is much debate about when the modulation of the primary visual cortex occurs, whether it is modulated in the feedforward sweep of processing or modulated by feedback projections from extrastriate and higher cortical areas. MEG and psychophysical measurements were used to look at spatially selective covert attention. Dual-task and cue-based paradigms were used. It was found that the posterior parietal cortex (PPC), in particular the SPL and IPL, was the main site of activation during these experiments, and that the left parietal lobe was activated more strongly than the right parietal lobe throughout. The levels of activation in both parietal and occipital areas were modulated in accordance with attentional demands. It is likely that spatially selective covert attention is dominated by the left parietal lobe, and that this takes the form of the proposed sensory-perceptual lateralization within the parietal lobes. Another form of lateralization is proposed, termed the motor-processing lateralization, the side of dominance being determined by handedness, being reversed in left- relative to right-handers. In terms of the modulation of the primary visual cortex, it was found that it is unlikely that V1 is modulated initially; rather the modulation takes the form of feedback from higher extrastriate and parietal areas. This fits with the idea of preattentive visual processing, a commonly accepted idea which, in itself, prevents the concept of initial modulation of V1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human mirror neuron system (MNS) has recently been a major topic of research in cognitive neuroscience. As a very basic reflection of the MNS, human observers are faster at imitating a biological as compared with a non-biological movement. However, it is unclear which cortical areas and their interactions (synchronization) are responsible for this behavioural advantage. We investigated the time course of long-range synchronization within cortical networks during an imitation task in 10 healthy participants by means of whole-head magnetoencephalography (MEG). Extending previous work, we conclude that left ventrolateral premotor, bilateral temporal and parietal areas mediate the observed behavioural advantage of biological movements in close interaction with the basal ganglia and other motor areas (cerebellum, sensorimotor cortex). Besides left ventrolateral premotor cortex, we identified the right temporal pole and the posterior parietal cortex as important junctions for the integration of information from different sources in imitation tasks that are controlled for movement (biological vs. non-biological) and that involve a certain amount of spatial orienting of attention. Finally, we also found the basal ganglia to participate at an early stage in the processing of biological movement, possibly by selecting suitable motor programs that match the stimulus.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objective: To study the topography of neurofibrillary tangles (NFT) in cortical and subcortical areas in progressive supranuclear palsy (PSP). Methods: Pattern analysis was carried out on tau-positive NFT in eight PSP cases. Results: Of the areas studied, NFT were randomly distributed in 68%, regularly distributed in 3%, and clustered in 29%. A regular distribution of clusters was more frequent in cortical than subcortical areas. Conclusion: NFT topography in subcortical areas was similar to inclusions in the synucleinopathy multiple system atrophy (MSA) but in cortical areas was comparable to other tauopathies. © 2006 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The frequency of morphological abnormalities in neuronal perikarya was studied in the cerebral cortex in cases of sporadic CJD (sCJD) and in elderly control patients. Three hypotheses were tested, namely that the proportion of neurons exhibiting abnormal morphology was increased: (i) in sCJD compared with control patients; (ii) in sCJD, in areas with significant prion protein (PrP) deposition compared with regions with little or no PrP deposition; and (iii) when neurons were spatially associated with a PrP deposit compared with neurons between PrP deposits. Changes in cell shape (swollen or atrophic cell bodies), nuclei (displaced, indistinct, shrunken or absent nuclei; absence of nucleolus), and cytoplasm (dense or pale cytoplasm, PrP positive cytoplasm, vacuolation) were commonly observed in all of the cortical areas studied in the sCJD cases. The proportion of neurons exhibiting each type of morphological change was significantly increased in sCJD compared with age-matched control cases. In sCJD, neuronal abnormalities were present in areas with little PrP deposition, but at significantly lower frequencies compared with areas with significant densities of PrP deposits. Abnormalities of cell shape, nucleus and the presence of cytoplasmic vacuolation were increased when the neurons were associated with a PrP deposit, but fewer of these neurons were PrP-positive compared with neurons between deposits. The data suggest significant neuronal degeneration in the cerebral cortex in sCJD in areas without significant PrP deposition and a further phase of neuronal degeneration associated with the appearance of PrP deposits.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We discuss the application of beamforming techniques to the field of magnetoencephalography (MEG). We argue that beamformers have given us an insight into the dynamics of oscillatory changes across the cortex not explored previously with traditional analysis techniques that rely on averaged evoked responses. We review several experiments that have used beamformers, with special emphasis on those in which the results have been compared to those observed in functional magnetic resonance imaging (fMRI) and on those studying induced phenomena. We suggest that the success of the beamformer technique, despite the assumption that there are no linear interactions between the mesoscopic local field potentials across distinct cortical areas, may tell us something of the balance between functional integration and segregation in the human brain. What is more, MEG beamformer analysis facilitates the study of these complex interactions within cortical networks that are involved in both sensory-motor and cognitive processes. © 2005 Wiley-Liss, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Clustering of ballooned neurons (BN) and tau positive neurons with inclusion bodies (tau+ neurons) was studied in the upper and lower laminae of the frontal, parietal and temporal cortex in 12 patients with corticobasal degeneration (CBD). In a significant proportion of brain areas examined, BN and tau+ neurons exhibited clustering with a regular distribution of clusters parallel to the pia mater. A regular pattern of clustering of BN and tau+ neurons was observed equally frequently in all cortical areas examined and in the upper and lower laminae. No significant correlations were observed between the cluster sizes of BN or tau+ neurons in the upper compared with the lower cortex or between the cluster sizes of BN and tau+ neurons. The results suggest that BN and tau+ neurons in CBD exhibit the same type of spatial pattern as lesions in Alzheimer's disease, Lewy body dementia and Pick's disease. The regular periodicity of the cerebral cortical lesions is consistent with the degeneration of the cortico-cortical projections in CBD.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The laminar distribution of Lewy bodies (LB) and neurofibrillary tangles (NFT) was studied in twelve cases of dementia with Lewy bodies (DLB). LB density was maximal in the lower cortex in 59% of cortical areas, in the upper cortex in 31% of areas while densities were similar in the upper and lower cortex in 9% of areas. The distribution of LB was either unimodal with a lower cortical peak, or bimodal with density peaks in the upper and lower cortex. The density of NFT was maximal in the upper cortex in all tissues. The distributions of LB and NFT were similar in temporal and frontal cortex and in cases with and without Alzheimer’s disease (AD). The vertical densities of LB and NFT were not significantly correlated. LB formation may affect the feedback cortico-cortical pathway and the efferent cortical projections whereas NFT formation may affect the feedforward cortico-cortical pathway.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We propose a novel electroencephalographic application of a recently developed cerebral source extraction method (Functional Source Separation, FSS), which starts from extracranial signals and adds a functional constraint to the cost function of a basic independent component analysis model without requiring solutions to be independent. Five ad-hoc functional constraints were used to extract the activity reflecting the temporal sequence of sensory information processing along the somatosensory pathway in response to the separate left and right median nerve galvanic stimulation. Constraints required only the maximization of the responsiveness at specific latencies following sensory stimulation, without taking into account that any frequency or spatial information. After source extraction, the reliability of identified FS was assessed based on the position of single dipoles fitted on its retroprojected signals and on a discrepancy measure. The FS positions were consistent with previously reported data (two early subcortical sources localized in the brain stem and thalamus, the three later sources in cortical areas), leaving negligible residual activity at the corresponding latencies. The high-frequency component of the oscillatory activity (HFO) of the extracted component was analyzed. The integrity of the low amplitude HFOs was preserved for each FS. On the basis of our data, we suggest that FSS can be an effective tool to investigate the HFO behavior of the different neuronal pools, recruited at successive times after median nerve galvanic stimulation. As FSs are reconstructed along the entire experimental session, directional and dynamic HFO synchronization phenomena can be studied.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Humans imitate biological movements faster than non-biological movements. The faster response has been attributed to an activation of the human mirror neuron system, which is thought to match observation and execution of actions. However, it is unclear which cortical areas are responsible for this behavioural advantage. Also, little is known about the timing of activations. Using whole-head magnetoencephalography we recorded neuronal responses to single biological finger movements and non-biological dot movements while the subjects were required to perform an imitation task or an observation task, respectively. Previous imaging studies on the human mirror neurone system suggested that activation in response to biological movements would be stronger in ventral premotor, parietal and superior temporal regions. In accordance with previous studies, reaction times to biological movements were faster than those to dot movements in all subjects. The analysis of evoked magnetic fields revealed that the reaction time benefit was paralleled by stronger and earlier activation of the left temporo-occipital cortex, right superior temporal area and right ventral motor/premotor area. The activity patterns suggest that the latter areas mediate the observed behavioural advantage of biological movements and indicate a predominant contribution of the right temporo-frontal hemisphere to action observation–execution matching processes in intransitive movements, which has not been reported previously.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

If humans monitor streams of rapidly presented (approximately 100-ms intervals) visual stimuli, which are typically specific single letters of the alphabet, for two targets (T1 and T2), they often miss T2 if it follows T1 within an interval of 200-500 ms. If T2 follows T1 directly (within 100 ms; described as occurring at 'Lag 1'), however, performance is often excellent: the so-called 'Lag-1 sparing' phenomenon. Lag-1 sparing might result from the integration of the two targets into the same 'event representation', which fits with the observation that sparing is often accompanied by a loss of T1-T2 order information. Alternatively, this might point to competition between the two targets (implying a trade-off between performance on T1 and T2) and Lag-1 sparing might solely emerge from conditional data analysis (i.e. T2 performance given T1 correct). We investigated the neural correlates of Lag-1 sparing by carrying out magnetoencephalography (MEG) recordings during an attentional blink (AB) task, by presenting two targets with a temporal lag of either 1 or 2 and, in the case of Lag 2, with a nontarget or a blank intervening between T1 and T2. In contrast to Lag 2, where two distinct neural responses were observed, at Lag 1 the two targets produced one common neural response in the left temporo-parieto-frontal (TPF) area but not in the right TPF or prefrontal areas. We discuss the implications of this result with respect to competition and integration hypotheses, and with respect to the different functional roles of the cortical areas considered. We suggest that more than one target can be identified in parallel in left TPF, at least in the absence of intervening nontarget information (i.e. masks), yet identified targets are processed and consolidated as two separate events by other cortical areas (right TPF and PFC, respectively).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Introduction: The basal ganglia are interconnected with cortical areas involved in behavioural, cognitive and emotional processes, in addition to movement regulation. Little is known about which of these functions are associated with individual basal ganglia substructures. Methods: Pubmed was searched for literature related to behavioural, cognitive and emotional symptoms associated with focal lesions to basal ganglia structures in humans. Results: Six case-control studies and two case reports were identified as relevant. Lesion sites included the caudate nucleus, putamen and globus pallidus. These were associated with a spectrum of behavioural and cognitive symptoms, including abulia, poor working memory and deficits in emotional recognition. Discussion: It is often difficult to precisely map associations between cognitive, emotional or behavioural functions and particular basal ganglia substructures, due to the non-specific nature of the lesions. However, evidence from lesion studies shows that most symptoms correspond with established non-motor frontal-subcortical circuits. © 2013-IOS Press and the authors. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The laminar distribution of the vacuolation ('spongiform change'), surviving neurons, glial cell nuclei, and prion protein (PrP) deposits was studied in the frontal, parietal and temporal cortex in 11 cases of sporadic Creutzfeldt-Jakob disease (CJD). The distribution of the vacuolation was mainly bimodal with peaks of density in the upper and lower cortical laminae. The density of surviving neurons was greatest in the upper cortex while glial cell nuclei were distributed largely in the lower cortex. PrP deposits exhibited either a bimodal distribution or reached a maximum density in the lower cortex. The vertical density of the vacuoles was positively correlated with the surviving neurons in 12/44 of cortical areas studied, with glial cell nuclei in 16/44 areas and with PrP deposition in 15/28 areas. PrP deposits were positively correlated with glial cell nuclei in 12/31 areas. These results suggest that in sporadic CJD: (1) the lower cortical laminae are the most affected by the pathological changes; (2) the development of the vacuolation may precede that of the extracellular PrP deposits and the glial cell reaction; and (3) the pathological changes may develop initially in the lower cortical laminae and spread to affect the upper cortical laminae. © 2001 Elsevier Science Ireland Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the cerebral cortex of cases of sporadic Creutzfeldt-Jakob disease (sCJD), the vacuolation (spongiform change) and PrP deposits are aggregated into clusters which are regularly distributed parallel to the pia mater. The objective of the present study was to determine the spatial relationships between the clusters of the vacuoles and PrP deposits and between the pathological changes and variations in the density of surviving neurons. In areas with low densities of pathological change, clusters of vacuoles were spatially correlated with the surviving neurons and not with the PrP deposits. By contrast, in more significantly affected areas, clusters of vacuoles were spatially correlated with those of the PrP deposits and not with the surviving neurons. In addition, areas with a high density of vacuoles and a low density of PrP deposits exhibited no spatial correlations between the variables. These data suggest that the spatial relationships between the vacuolation, PrP deposits and surviving neurons in sCJD depend on the density of lesions present. Differences in the pattern of correlation may reflect the developmental stage of the pathology in particular cortical areas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Corticobasal degeneration (CBD) is a rare and progressive neurological disorder characterised by the presence of ballooned neurons (BN) and tau positive inclusions in neurons and glial cells. We studied the spatial patterns of the BN, tau positive neurons with inclusions (tau + neurons), and tau positive plaques in the neocortex and hippocampus in 12 cases of CBD. All lesions were aggregated into clusters and in many brain areas, the clusters were distributed in a regular pattern parallel to the tissue boundary. In the majority of cortical areas, the clusters of BN were larger in the lower compared with the upper laminae while the clusters of tau + neurons were larger in the upper laminae. Clusters of BN and tau + neurons were either negatively correlated or not significantly correlated in the upper and lower cortical laminae. Hence, BN and tau + lesions in CBD exhibit similar spatial patterns as lesions in Alzheimer's disease (AD), dementia with Lewy bodies (DLB) and Pick's disease (PD). The location, sizes and distribution of the clusters in the neocortex suggest that the tau + lesions may be associated with the degeneration of the feedforward and the BN the feedback cortico-cortical and/or the efferent cortical pathways. © 2001 Elsevier Science Ireland Ltd. All rights reserved.