42 resultados para Motion perception (Vision)

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

When viewing a drifting plaid stimulus, perceived motion alternates over time between coherent pattern motion and a transparent impression of the two component gratings. It is known that changing the intrinsic attributes of such patterns (e.g. speed, orientation and spatial frequency of components) can influence percept predominance. Here, we investigate the contribution of extrinsic factors to perception; specifically contextual motion and eye movements. In the first experiment, the percept most similar to the speed and direction of surround motion increased in dominance, implying a tuned integration process. This shift primarily involved an increase in dominance durations of the consistent percept. The second experiment measured eye movements under similar conditions. Saccades were not associated with perceptual transitions, though blink rate increased around the time of a switch. This indicates that saccades do not cause switches, yet saccades in a congruent direction might help to prolong a percept because i) more saccades were directionally congruent with the currently reported percept than expected by chance, and ii) when observers were asked to make deliberate eye movements along one motion axis, this increased percept reports in that direction. Overall, we find evidence that perception of bistable motion can be modulated by information from spatially adjacent regions, and changes to the retinal image caused by blinks and saccades.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Models of visual motion processing that introduce priors for low speed through Bayesian computations are sometimes treated with scepticism by empirical researchers because of the convenient way in which parameters of the Bayesian priors have been chosen. Using the effects of motion adaptation on motion perception to illustrate, we show that the Bayesian prior, far from being convenient, may be estimated on-line and therefore represents a useful tool by which visual motion processes may be optimized in order to extract the motion signals commonly encountered in every day experience. The prescription for optimization, when combined with system constraints on the transmission of visual information, may lead to an exaggeration of perceptual bias through the process of adaptation. Our approach extends the Bayesian model of visual motion proposed byWeiss et al. [Weiss Y., Simoncelli, E., & Adelson, E. (2002). Motion illusions as optimal perception Nature Neuroscience, 5:598-604.], in suggesting that perceptual bias reflects a compromise taken by a rational system in the face of uncertain signals and system constraints. © 2007.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Following adaptation to an oriented (1-d) signal in central vision, the orientation of subsequently viewed test signals may appear repelled away from or attracted towards the adapting orientation. Small angular differences between the adaptor and test yield 'repulsive' shifts, while large angular differences yield 'attractive' shifts. In peripheral vision, however, both small and large angular differences yield repulsive shifts. To account for these tilt after-effects (TAEs), a cascaded model of orientation estimation that is optimized using hierarchical Bayesian methods is proposed. The model accounts for orientation bias through adaptation-induced losses in information that arise because of signal uncertainties and neural constraints placed upon the propagation of visual information. Repulsive (direct) TAEs arise at early stages of visual processing from adaptation of orientation-selective units with peak sensitivity at the orientation of the adaptor (theta). Attractive (indirect) TAEs result from adaptation of second-stage units with peak sensitivity at theta and theta+90 degrees , which arise from an efficient stage of linear compression that pools across the responses of the first-stage orientation-selective units. A spatial orientation vector is estimated from the transformed oriented unit responses. The change from attractive to repulsive TAEs in peripheral vision can be explained by the differing harmonic biases resulting from constraints on signal power (in central vision) versus signal uncertainties in orientation (in peripheral vision). The proposed model is consistent with recent work by computational neuroscientists in supposing that visual bias reflects the adjustment of a rational system in the light of uncertain signals and system constraints.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Stimuli from one family of complex motions are defined by their spiral pitch, where cardinal axes represent signed expansion and rotation. Intermediate spirals are represented by intermediate pitches. It is well established that vision contains mechanisms that sum over space and direction to detect these stimuli (Morrone et al., Nature 376 (1995) 507) and one possibility is that four cardinal mechanisms encode the entire family. We extended earlier work (Meese & Harris, Vision Research 41 (2001) 1901) using subthreshold summation of random dot kinematograms and a two-interval forced choice technique to investigate this possibility. In our main experiments, the spiral pitch of one component was fixed and that of another was varied in steps of 15° relative to the first. Regardless of whether the fixed component was aligned with cardinal axes or an intermediate spiral, summation to-coherence-threshold between the two components declined as a function of their difference in spiral pitch. Similar experiments showed that none of the following were critical design features or stimulus parameters for our results: superposition of signal dots, limited life-time dots, the presence of speed gradients, stimulus size or the number of dots. A simplex algorithm was used to fit models containing mechanisms spaced at a pitch of either 90° (cardinal model) or 45° (cardinal+model) and combined using a fourth-root summation rule. For both models, direction half-bandwidth was equated for all mechanisms and was the only free parameter. Only the cardinal+model could account for the full set of results. We conclude that the detection of complex motion in human vision requires both cardinal and spiral mechanisms with a half-bandwidth of approximately 46°. © 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Growing evidence from psychophysics and single-unit recordings suggests specialised mechanisms in the primate visual system for the detection of complex motion patterns such as expansion and rotation. Here we used a subthreshold summation technique to determine the direction tuning functions of the detecting mechanisms. We measured thresholds for discriminating noise and signal + noise for pairs of superimposed complex motion patterns (signal A and B) carried by random-dot stimuli in a circular 5° field. For expansion, rotation, deformation and translation we found broad tuning functions approximated by cos(d), where d is the difference in dot directions for signal A and B. These data were well described by models in which either: (a) cardinal mechanisms had direction bandwidths (half-widths) of around 60° or (b) the number of mechanisms was increased and their half-width was reduced to about 40°. When d = 180° we found summation to be greater than probability summation for expansion, rotation and translation, consistent with the idea that mechanisms for these stimuli are constructed from subunits responsive to relative motion. For deformation, however, we found sensitivity declined when d = 180°, suggesting antagonistic input from directional subunits in the deformation mechanism. This is a necessary property for a mechanism whose job is to extract the deformation component from the optic flow field. © 2001 Elsevier Science Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Parkinson’s disease (PD) is a common disorder of middle-aged and elderly people in which degeneration of the extrapyramidal motor system causes significant movement problems. In some patients, however, there are additional disturbances in sensory systems including loss of the sense of smell and auditory and/or visual problems. This article is a general overview of the visual problems likely to be encountered in PD. Changes in vision in PD may result from alterations in visual acuity, contrast sensitivity, colour discrimination, pupil reactivity, eye movements, motion perception, visual field sensitivity and visual processing speeds. Slower visual processing speeds can also lead to a decline in visual perception especially for rapidly changing visual stimuli. In addition, there may be disturbances of visuo-spatial orientation, facial recognition problems, and chronic visual hallucinations. Some of the treatments used in PD may also have adverse ocular reactions. The pattern electroretinogram (PERG) is useful in evaluating retinal dopamine mechanisms and in monitoring dopamine therapies in PD. If visual problems are present, they can have an important effect on the quality of life of the patient, which can be improved by accurate diagnosis and where possible, correction of such defects.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This review describes the oculo-visual problems likely to be encountered in Parkinson's disease (PD) with special reference to three questions: (1) are there visual symptoms characteristic of the prodromal phase of PD, (2) is PD dementia associated with specific visual changes, and (3) can visual symptoms help in the differential diagnosis of the parkinsonian syndromes, viz. PD, progressive supranuclear palsy (PSP), dementia with Lewy bodies (DLB), multiple system atrophy (MSA), and corticobasal degeneration (CBD)? Oculo-visual dysfunction in PD can involve visual acuity, dynamic contrast sensitivity, colour discrimination, pupil reactivity, eye movement, motion perception, and visual processing speeds. In addition, disturbance of visuo-spatial orientation, facial recognition problems, and chronic visual hallucinations may be present. Prodromal features of PD may include autonomic system dysfunction potentially affecting pupil reactivity, abnormal colour vision, abnormal stereopsis associated with postural instability, defects in smooth pursuit eye movements, and deficits in visuo-motor adaptation, especially when accompanied by idiopathic rapid eye movement (REM) sleep behaviour disorder. PD dementia is associated with the exacerbation of many oculo-visual problems but those involving eye movements, visuo-spatial function, and visual hallucinations are most characteristic. Useful diagnostic features in differentiating the parkinsonian symptoms are the presence of visual hallucinations, visuo-spatial problems, and variation in saccadic eye movement dysfunction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neuroimaging studies of cortical activation during image transformation tasks have shown that mental rotation may rely on similar brain regions as those underlying visual perceptual mechanisms. The V5 complex, which is specialised for visual motion, is one region that has been implicated. We used functional magnetic resonance imaging (fMRI) to investigate rotational and linear transformation of stimuli. Areas of significant brain activation were identified for each of the primary mental transformation tasks in contrast to its own perceptual reference task which was cognitively matched in all respects except for the variable of interest. Analysis of group data for perception of rotational and linear motion showed activation in areas corresponding to V5 as defined in earlier studies. Both rotational and linear mental transformations activated Brodman Area (BA) 19 but did not activate V5. An area within the inferior temporal gyrus, representing an inferior satellite area of V5, was activated by both the rotational perception and rotational transformation tasks, but showed no activation in response to linear motion perception or transformation. The findings demonstrate the extent to which neural substrates for image transformation and perception overlap and are distinct as well as revealing functional specialisation within perception and transformation processing systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We sought to determine the extent to which red–green, colour–opponent mechanisms in the human visual system play a role in the perception of drifting luminance–modulated targets. Contrast sensitivity for the directional discrimination of drifting luminance–modulated (yellow–black) test sinusoids was measured following adaptation to isoluminant red–green sinusoids drifting in either the same or opposite direction. When the test and adapt stimuli drifted in the same direction, large sensitivity losses were evident at all test temporal frequencies employed (1–16 Hz). The magnitude of the loss was independent of temporal frequency. When adapt and test stimuli drifted in opposing directions, large sensitivity losses were evident at lower temporal frequencies (1–4 Hz) and declined with increasing temporal frequency. Control studies showed that this temporal–frequency–dependent effect could not reflect the activity of achromatic units. Our results provide evidence that chromatic mechanisms contribute to the perception of luminance–modulated motion targets drifting at speeds of up to at least 32°s-1. We argue that such mechanisms most probably lie within a parvocellular–dominated cortical visual pathway, sensitive to both chromatic and luminance modulation, but only weakly selective for the direction of stimulus motion.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Blurred edges appear sharper in motion than when they are stationary. We proposed a model of this motion sharpening that invokes a local, nonlinear contrast transducer function (Hammett et al, 1998 Vision Research 38 2099-2108). Response saturation in the transducer compresses or 'clips' the input spatial waveform, rendering the edges as sharper. To explain the increasing distortion of drifting edges at higher speeds, the degree of nonlinearity must increase with speed or temporal frequency. A dynamic contrast gain control before the transducer can account for both the speed dependence and approximate contrast invariance of motion sharpening (Hammett et al, 2003 Vision Research, in press). We show here that this model also predicts perceived sharpening of briefly flashed and flickering edges, and we show that the model can account fairly well for experimental data from all three modes of presentation (motion, flash, and flicker). At moderate durations and lower temporal frequencies the gain control attenuates the input signal, thus protecting it from later compression by the transducer. The gain control is somewhat sluggish, and so it suffers both a slow onset, and loss of power at high temporal frequencies. Consequently, brief presentations and high temporal frequencies of drift and flicker are less protected from distortion, and show greater perceptual sharpening.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

How does nearby motion affect the perceived speed of a target region? When a central drifting Gabor patch is surrounded by translating noise, its speed can be misperceived over a fourfold range. Typically, when a surround moves in the same direction, perceived centre speed is reduced; for opposite-direction surrounds it increases. Measuring this illusion for a variety of surround properties reveals that the motion context effects are a saturating function of surround speed (Experiment I) and contrast (Experiment II). Our analyses indicate that the effects are consistent with a subtractive process, rather than with speed being averaged over area. In Experiment III we exploit known properties of the motion system to ask where these surround effects impact. Using 2D plaid stimuli, we find that surround-induced shifts in perceived speed of one plaid component produce substantial shifts in perceived plaid direction. This indicates that surrounds exert their influence early in processing, before pattern motion direction is computed. These findings relate to ongoing investigations of surround suppression for direction discrimination, and are consistent with single-cell findings of direction-tuned suppressive and facilitatory interactions in primary visual cortex (V1).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract We recorded MEG responses from 17 participants viewing random-dot patterns simulating global optic flow components (expansion, contraction, rotation, deformation, and translation) and a random motion control condition. Theta-band (3–7 Hz), MEG signal power was greater for expansion than the other optic flow components in a region concentrated along the calcarine sulcus, indicating an ecologically valid, foveo-fugal bias for unidirectional motion sensors in V1. When the responses to the optic flow components were combined, a decrease in MEG beta-band (17–23 Hz) power was found in regions extending beyond the calcarine sulcus to the posterior parietal lobe (inferior to IPS), indicating the importance of structured motion in this region. However, only one cortical area, within or near the V5/hMT+ complex, responded to all three spiral-space components (expansion, contraction, and rotation) and showed no selectivity for global translation or deformation: we term this area hMSTs. This is the first demonstration of an exclusive region for spiral space in the human brain and suggests a functional role better suited to preliminary analysis of ego-motion than surface pose, which would involve deformation. We also observed that the rotation condition activated the cerebellum, suggesting its involvement in visually mediated control of postural adjustment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Review of Basic vision: an introduction to visual perception by R Snowden, P Thompson, T Troscianko; Oxford University Press, Oxford, 408 pages, »27.99 paper (US$59.95) ISBN 9780199286706.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A preliminary study by Freeman et al (1996b) has suggested that when complex patterns of motion elicit impressions of 2-dimensionality, odd-item-out detection improves given targets can be differentiated on the basis of surface properties. Their results can be accounted for, it if is supposed that observers are permitted efficient access to 3-D surface descriptions but access to 2-D motion descriptions is restricted. To test the hypothesis, a standard search technique was employed, in which targets could be discussed on the basis of slant sign. In one experiment, slant impressions were induced through the summing of deformation and translation components. In a second theory were induced through the summing of shear and translation components. Neither showed any evidence of efficient access. A third experiment explored the possibility that access to these representations may have been hindered by a lack of grouping between the stimuli. Attempts to improve grouping failed to produce convincing evidence in support of life. An alternative explanation is that complex patterns of motion are simply not processed simultaneously. Psychophysical and physiological studies have, however, suggested that multiple mechanisms selective for complex motion do exist. Using a subthreshold summation technique I found evidence supporting the notion that complex motions are processed in parallel. Furthermore, in a spatial summation experiment, coherence thresholds were measured for displays containing different numbers of complex motion patches. Consistent with the idea that complex motion processing proceeds in parallel, increases in the number of motion patches were seen to decrease thresholds, both for expansion and rotation. Moreover, the rates of decrease were higher than those typically expected from probability summation, thus implying mechanisms are available, which can pool signals from spatially distinct complex motion flows.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

THE PURPOSE OF THIS ARTICLE is two-fold, first to provide a general overview of two of the main cognitive neuroscientific techniques available, specifically functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS); and secondly to apply these techniques to elaborate a discussion of an aspect of higher level vision, namely implied motion, that is the perception of movement from a static image.