23 resultados para Motion capture systems
em Aston University Research Archive
Resumo:
This paper examines how the introduction and use of a new information system affects and is affected by the values of a diverse professional workforce. It uses the example of lecture capture systems in a university. Its contribution is to combine two concepts taken from actor-network theory, namely accumulation and inscription, and combine them with an integrated framework of diversity management. A model is developed of accumulation cycles in lecture capture usage, involving multiple interacting actants, including the broader environment, management commitment to diversity, work group characteristics, individual practices and the affordances of technology. Using this model, alternative future inscriptions can be identified - an optimal one, which enhances professional values, as a result of a virtuous accumulation cycle, or a sub-optimal one, as a result of a vicious cycle. It identifies diversity management as an important influence on how professional values are enhanced, modified or destroyed.
Resumo:
DDevelopmental dyslexia is a reading disorder associated with impaired postural control. However, such deficits are also found in attention deficit hyperactivity disorder (ADHD), which is present in a substantial subset of dyslexia diagnoses. Very few studies of balance in dyslexia have assessed ADHD symptoms, thereby motivating the hypothesis that such measures can account for the group differences observed. In this study, we assessed adults with dyslexia and similarly aged controls on a battery of cognitive, literacy and attention measures, alongside tasks of postural stability. Displacements of centre of mass to perturbations of posture were measured in four experimental conditions using digital optical motion capture. The largest group differences were obtained in conditions where cues to the support surface were reduced. Between-group differences in postural sway and in sway variability were largely accounted for by co-varying hyperactivity and inattention ratings, however. These results therefore suggest that postural instability in dyslexia is more strongly associated with symptoms of ADHD than to those specific to reading impairment.
Resumo:
Current approaches for purifying plasmids from bacterial production systems exploit the physiochemical properties of nucleic acids in non-specific capture systems. In this study, an affinity system for plasmid DNA (pDNA) purification has been developed utilizing the interaction between the lac operon (lacO) sequence contained in the pDNA and a 64mer synthetic peptide representing the DNA-binding domain of the lac repressor protein, LacI. Two plasmids were evaluated, the native pUC19 and pUC19 with dual lacO3/lacOs operators (pUC19lacO3/lacOs), where the lacOs operator is perfectly symmetrical. The DNA-protein affinity interaction was evaluated by surface plasmon resonance using a Biacore system. The affinity capture of DNA in a chromatography system was evaluated using LacI peptide that had been immobilized to Streamline™ adsorbent. The KD-values for double stranded DNA (dsDNA) fragments containing lacO1 and lacO3 and lacOs and lacO3 were 5.7 ± 0.3 × 10 -11 M and 4.1 ± 0.2 × 10-11 M respectively, which compare favorably with literature reports of 5 × 10-10 - 1 × 10-9 M for native laCO1 and 1-1.2 × 10-10 M for lacO1 in a saline buffer. Densitometric analysis of the gel bands from the affinity chromatography run clearly showed a significant preference for capture of the supercoiled fraction from the feed pDNA sample. The results indicate the feasibility of the affinity approach for pDNA capture and purification using native protein-DNA interaction. © 2006 Wiley Periodicals, Inc.
Resumo:
This thesis presents the design, fabrication and testing of novel grating based Optical Fibre Sensor (OFS) systems being interrogated using “off the shelf” interrogation systems, with the eventual development of marketable commercial systems at the forefront of the research. Both in the industrial weighing and aerospace industries, there has been a drive to investigate the feasibility of using optical fibre sensors being deployed where traditionally their electrical or mechanical counterparts would traditionally have been. Already, in the industrial weighing industry, commercial operators are deploying OFS-based Weigh-In-Motion (WIM) systems. Likewise, in the aerospace industry, OFS have been deployed to monitor such parameters as load history, impact detection, structural damage, overload detection, centre of gravity and the determination of blade shape. Based on the intrinsic properties of fibre Bragg gratings (FBGs) and Long Period Fibre Gratings (LPFGs), a number of novel OFS-based systems have been realised. Experimental work has shown that in the case of static industrial weighing, FBGs can be integrated with current commercial products and used to detect applied loads. The work has also shown that embedding FBGs in e-glass, to form a sensing patch, can result in said patches being bonded to rail track, forming the basis of an FBG-based WIM system. The results obtained have been sufficiently encouraging to the industrial partner that this work will be progressed beyond the scope of the work presented in this thesis. Likewise, and to the best of the author’s knowledge, a novel Bragg grating based systems for aircraft fuel parameter sensing has been presented. FBG-based pressure sensors have been shown to demonstrate good sensitivity, linearity and repeatability, whilst LPFG-based systems have demonstrated a far greater sensitivity when compared to FBGs, as well the advantage of being potentially able to detect causes of fuel adulteration based on their sensitivity to refractive index (RI). In the case of the LPFG-based system, considerable work remains to be done on the mechanical strengthening to improve its survivability in a live aircraft fuel tank environment. The FBG system has already been developed to an aerospace compliant prototype and is due to be tested at the fuel testing facility based at Airbus, Filton, UK. It is envisaged by the author that in both application areas, continued research in this area will lead to the eventual development of marketable commercial products.
Resumo:
Objective: The purpose of this study was to determine the extent to which mobility indices (such as walking speed and postural sway), motor initiation, and cognitive function, specifically executive functions, including spatial planning, visual attention, and within participant variability, differentially predicted collisions in the near and far sides of the road with increasing age. Methods: Adults aged over 45 years participated in cognitive tests measuring executive function and visual attention (using Useful Field of View; UFoV®), mobility assessments (walking speed, sit-to-stand, self-reported mobility, and postural sway assessed using motion capture cameras), and gave road crossing choices in a two-way filmed real traffic pedestrian simulation. Results: A stepwise regression model of walking speed, start-up delay variability, and processing speed) explained 49.4% of the variance in near-side crossing errors. Walking speed, start-up delay measures (average & variability), and spatial planning explained 54.8% of the variance in far-side unsafe crossing errors. Start-up delay was predicted by walking speed only (explained 30.5%). Conclusion: Walking speed and start-up delay measures were consistent predictors of unsafe crossing behaviours. Cognitive measures, however, differentially predicted near-side errors (processing speed), and far-side errors (spatial planning). These findings offer potential contributions for identifying and rehabilitating at-risk older pedestrians.
Resumo:
The aims of this thesis were to investigate the neuropsychological, neurophysiological, and cognitive contributors to mobility changes with increasing age. In a series of studies with adults aged 45-88 years, unsafe pedestrian behaviour and falls were investigated in relation to i) cognitive functions (including response time variability, executive function, and visual attention tests), ii) mobility assessments (including gait and balance and using motion capture cameras), iii) motor initiation and pedestrian road crossing behavior (using a simulated pedestrian road scene), iv) neuronal and functional brain changes (using a computer based crossing task with magnetoencephalography), and v) quality of life questionnaires (including fear of falling and restricted range of travel). Older adults are more likely to be fatally injured at the far-side of the road compared to the near-side of the road, however, the underlying mobility and cognitive processes related to lane-specific (i.e. near-side or far-side) pedestrian crossing errors in older adults is currently unknown. The first study explored cognitive, motor initiation, and mobility predictors of unsafe pedestrian crossing behaviours. The purpose of the first study (Chapter 2) was to determine whether collisions at the near-side and far-side would be differentially predicted by mobility indices (such as walking speed and postural sway), motor initiation, and cognitive function (including spatial planning, visual attention, and within participant variability) with increasing age. The results suggest that near-side unsafe pedestrian crossing errors are related to processing speed, whereas far-side errors are related to spatial planning difficulties. Both near-side and far-side crossing errors were related to walking speed and motor initiation measures (specifically motor initiation variability). The salient mobility predictors of unsafe pedestrian crossings determined in the above study were examined in Chapter 3 in conjunction with the presence of a history of falls. The purpose of this study was to determine the extent to which walking speed (indicated as a salient predictor of unsafe crossings and start-up delay in Chapter 2), and previous falls can be predicted and explained by age-related changes in mobility and cognitive function changes (specifically within participant variability and spatial ability). 53.2% of walking speed variance was found to be predicted by self-rated mobility score, sit-to-stand time, motor initiation, and within participant variability. Although a significant model was not found to predict fall history variance, postural sway and attentional set shifting ability was found to be strongly related to the occurrence of falls within the last year. Next in Chapter 4, unsafe pedestrian crossing behaviour and pedestrian predictors (both mobility and cognitive measures) from Chapter 2 were explored in terms of increasing hemispheric laterality of attentional functions and inter-hemispheric oscillatory beta power changes associated with increasing age. Elevated beta (15-35 Hz) power in the motor cortex prior to movement, and reduced beta power post-movement has been linked to age-related changes in mobility. In addition, increasing recruitment of both hemispheres has been shown to occur and be beneficial to perform similarly to younger adults in cognitive tasks (Cabeza, Anderson, Locantore, & McIntosh, 2002). It has been hypothesised that changes in hemispheric neural beta power may explain the presence of more pedestrian errors at the farside of the road in older adults. The purpose of the study was to determine whether changes in age-related cortical oscillatory beta power and hemispheric laterality are linked to unsafe pedestrian behaviour in older adults. Results indicated that pedestrian errors at the near-side are linked to hemispheric bilateralisation, and neural overcompensation post-movement, 4 whereas far-side unsafe errors are linked to not employing neural compensation methods (hemispheric bilateralisation). Finally, in Chapter 5, fear of falling, life space mobility, and quality of life in old age were examined to determine their relationships with cognition, mobility (including fall history and pedestrian behaviour), and motor initiation. In addition to death and injury, mobility decline (such as pedestrian errors in Chapter 2, and falls in Chapter 3) and cognition can negatively affect quality of life and result in activity avoidance. Further, number of falls in Chapter 3 was not significantly linked to mobility and cognition alone, and may be further explained by a fear of falling. The objective of the above study (Study 2, Chapter 3) was to determine the role of mobility and cognition on fear of falling and life space mobility, and the impact on quality of life measures. Results indicated that missing safe pedestrian crossing gaps (potentially indicating crossing anxiety) and mobility decline were consistent predictors of fear of falling, reduced life space mobility, and quality of life variance. Social community (total number of close family and friends) was also linked to life space mobility and quality of life. Lower cognitive functions (particularly processing speed and reaction time) were found to predict variance in fear of falling and quality of life in old age. Overall, the findings indicated that mobility decline (particularly walking speed or walking difficulty), processing speed, and intra-individual variability in attention (including motor initiation variability) are salient predictors of participant safety (mainly pedestrian crossing errors) and wellbeing with increasing age. More research is required to produce a significant model to explain the number of falls.
Resumo:
Internally heated fluids are found across the nuclear fuel cycle. In certain situations the motion of the fluid is driven by the decay heat (i.e. corium melt pools in severe accidents, the shutdown of liquid metal reactors, molten salt and the passive control of light water reactors) as well as normal operation (i.e. intermediate waste storage and generation IV reactor designs). This can in the long-term affect reactor vessel integrity or lead to localized hot spots and accumulation of solid wastes that may prompt local increases in activity. Two approaches to the modeling of internally heated convection are presented here. These are based on numerical analysis using codes developed in-house and simulations using widely available computational fluid dynamics solvers. Open and closed fluid layers at around the transition between conduction and convection of various aspect ratios are considered. We determine optimum domain aspect ratio (1:7:7 up to 1:24:24 for open systems and 5:5:1, 1:10:10 and 1:20:20 for closed systems), mesh resolutions and turbulence models required to accurately and efficiently capture the convection structures that evolve when perturbing the conductive state of the fluid layer. Note that the open and closed fluid layers we study here are bounded by a conducting surface over an insulating surface. Conclusions will be drawn on the influence of the periodic boundary conditions on the flow patterns observed. We have also examined the stability of the nonlinear solutions that we found with the aim of identifying the bifurcation sequence of these solutions en route to turbulence.
Resumo:
When a visual stimulus is continuously moved behind a small stationary window, the window appears displaced in the direction of motion of the stimulus. In this study we showed that the magnitude of this illusion is dependent on (i) whether a perceptual or visuomotor task is used for judging the location of the window, (ii) the directional signature of the stimulus, and (iii) whether or not there is a significant delay between the end of the visual presentation and the initiation of the localization measure. Our stimulus was a drifting sinusoidal grating windowed in space by a stationary, two-dimensional, Gaussian envelope (σ=1 cycle of sinusoid). Localization measures were made following either a short (200 ms) or long (4.2 s) post-stimulus delay. The visuomotor localization error was up to three times greater than the perceptual error for a short delay. However, the visuomotor and perceptual localization measures were similar for a long delay. Our results provide evidence in support of the hypothesis that separate cortical pathways exist for visual perception and visually guided action and that delayed actions rely on stored perceptual information.
Resumo:
We introduce models of heterogeneous systems with finite connectivity defined on random graphs to capture finite-coordination effects on the low-temperature behaviour of finite-dimensional systems. Our models use a description in terms of small deviations of particle coordinates from a set of reference positions, particularly appropriate for the description of low-temperature phenomena. A Born-von Karman-type expansion with random coefficients is used to model effects of frozen heterogeneities. The key quantity appearing in the theoretical description is a full distribution of effective single-site potentials which needs to be determined self-consistently. If microscopic interactions are harmonic, the effective single-site potentials turn out to be harmonic as well, and the distribution of these single-site potentials is equivalent to a distribution of localization lengths used earlier in the description of chemical gels. For structural glasses characterized by frustration and anharmonicities in the microscopic interactions, the distribution of single-site potentials involves anharmonicities of all orders, and both single-well and double-well potentials are observed, the latter with a broad spectrum of barrier heights. The appearance of glassy phases at low temperatures is marked by the appearance of asymmetries in the distribution of single-site potentials, as previously observed for fully connected systems. Double-well potentials with a broad spectrum of barrier heights and asymmetries would give rise to the well-known universal glassy low-temperature anomalies when quantum effects are taken into account. © 2007 IOP Publishing Ltd.
Resumo:
This thesis investigates the physical behaviour of solitons in wavelength division multiplexed (WDM) systems with dispersion management in a wide range of dispersion regimes. Background material is presented to show how solitons propagate in optical fibres, and key problems associated with real systems are outlined. Problems due to collision induced frequency shifts are calculated using numerical simulation, and these results compared with analytical techniques where possible. Different two-step dispersion regimes, as well as the special cases of uniform and exponentially profiled systems, are identified and investigated. In shallow profile, the constituent second-order dispersions in the system are always close to the average soliton value. It is shown that collision-induced frequency shifts in WDM soliton transmission systems are reduced with increasing dispersion management. New resonances in the collision dynamics are illustrated, due to the relative motion induced by the dispersion map. Consideration of third-order dispersion is shown to modify the effects of collision-induced timing jitter and third-order compensation investigated. In all cases pseudo-phase-matched four-wave mixing was found to be insignificant compared to collision induced frequency shift in causing deterioration of data. It is also demonstrated that all these effects are additive with that of Gordon-Haus jitter.
Resumo:
The thesis describes an investigation into methods for the specification, design and implementation of computer control systems for flexible manufacturing machines comprising multiple, independent, electromechanically-driven mechanisms. An analysis is made of the elements of conventional mechanically-coupled machines in order that the operational functions of these elements may be identified. This analysis is used to define the scope of requirements necessary to specify the format, function and operation of a flexible, independently driven mechanism machine. A discussion of how this type of machine can accommodate modern manufacturing needs of high-speed and flexibility is presented. A sequential method of capturing requirements for such machines is detailed based on a hierarchical partitioning of machine requirements from product to independent drive mechanism. A classification of mechanisms using notations, including Data flow diagrams and Petri-nets, is described which supports capture and allows validation of requirements. A generic design for a modular, IDM machine controller is derived based upon hierarchy of control identified in these machines. A two mechanism experimental machine is detailed which is used to demonstrate the application of the specification, design and implementation techniques. A computer controller prototype and a fully flexible implementation for the IDM machine, based on Petri-net models described using the concurrent programming language Occam, is detailed. The ability of this modular computer controller to support flexible, safe and fault-tolerant operation of the two intermittent motion, discrete-synchronisation independent drive mechanisms is presented. The application of the machine development methodology to industrial projects is established.
Resumo:
This work presents significant development into chaotic mixing induced through periodic boundaries and twisting flows. Three-dimensional closed and throughput domains are shown to exhibit chaotic motion under both time periodic and time independent boundary motions, A property is developed originating from a signature of chaos, sensitive dependence to initial conditions, which successfully quantifies the degree of disorder withjn the mixing systems presented and enables comparisons of the disorder throughout ranges of operating parameters, This work omits physical experimental results but presents significant computational investigation into chaotic systems using commercial computational fluid dynamics techniques. Physical experiments with chaotic mixing systems are, by their very nature, difficult to extract information beyond the recognition that disorder does, does not of partially occurs. The initial aim of this work is to observe whether it is possible to accurately simulate previously published physical experimental results through using commercial CFD techniques. This is shown to be possible for simple two-dimensional systems with time periodic wall movements. From this, and subsequent macro and microscopic observations of flow regimes, a simple explanation is developed for how boundary operating parameters affect the system disorder. Consider the classic two-dimensional rectangular cavity with time periodic velocity of the upper and lower walls, causing two opposing streamline motions. The degree of disorder within the system is related to the magnitude of displacement of individual particles within these opposing streamlines. The rationale is then employed in this work to develop and investigate more complex three-dimensional mixing systems that exhibit throughputs and time independence and are therefore more realistic and a significant advance towards designing chaotic mixers for process industries. Domains inducing chaotic motion through twisting flows are also briefly considered. This work concludes by offering possible advancements to the property developed to quantify disorder and suggestions of domains and associated boundary conditions that are expected to produce chaotic mixing.
Resumo:
This thesis introduces and develops a novel real-time predictive maintenance system to estimate the machine system parameters using the motion current signature. Recently, motion current signature analysis has been addressed as an alternative to the use of sensors for monitoring internal faults of a motor. A maintenance system based upon the analysis of motion current signature avoids the need for the implementation and maintenance of expensive motion sensing technology. By developing nonlinear dynamical analysis for motion current signature, the research described in this thesis implements a novel real-time predictive maintenance system for current and future manufacturing machine systems. A crucial concept underpinning this project is that the motion current signature contains information relating to the machine system parameters and that this information can be extracted using nonlinear mapping techniques, such as neural networks. Towards this end, a proof of concept procedure is performed, which substantiates this concept. A simulation model, TuneLearn, is developed to simulate the large amount of training data required by the neural network approach. Statistical validation and verification of the model is performed to ascertain confidence in the simulated motion current signature. Validation experiment concludes that, although, the simulation model generates a good macro-dynamical mapping of the motion current signature, it fails to accurately map the micro-dynamical structure due to the lack of knowledge regarding performance of higher order and nonlinear factors, such as backlash and compliance. Failure of the simulation model to determine the micro-dynamical structure suggests the presence of nonlinearity in the motion current signature. This motivated us to perform surrogate data testing for nonlinearity in the motion current signature. Results confirm the presence of nonlinearity in the motion current signature, thereby, motivating the use of nonlinear techniques for further analysis. Outcomes of the experiment show that nonlinear noise reduction combined with the linear reverse algorithm offers precise machine system parameter estimation using the motion current signature for the implementation of the real-time predictive maintenance system. Finally, a linear reverse algorithm, BJEST, is developed and applied to the motion current signature to estimate the machine system parameters.
Resumo:
This paper addresses the problem of obtaining 3d detailed reconstructions of human faces in real-time and with inexpensive hardware. We present an algorithm based on a monocular multi-spectral photometric-stereo setup. This system is known to capture high-detailed deforming 3d surfaces at high frame rates and without having to use any expensive hardware or synchronized light stage. However, the main challenge of such a setup is the calibration stage, which depends on the lights setup and how they interact with the specific material being captured, in this case, human faces. For this purpose we develop a self-calibration technique where the person being captured is asked to perform a rigid motion in front of the camera, maintaining a neutral expression. Rigidity constrains are then used to compute the head's motion with a structure-from-motion algorithm. Once the motion is obtained, a multi-view stereo algorithm reconstructs a coarse 3d model of the face. This coarse model is then used to estimate the lighting parameters with a stratified approach: In the first step we use a RANSAC search to identify purely diffuse points on the face and to simultaneously estimate this diffuse reflectance model. In the second step we apply non-linear optimization to fit a non-Lambertian reflectance model to the outliers of the previous step. The calibration procedure is validated with synthetic and real data.
Resumo:
This thesis makes a contribution to the Change Data Capture (CDC) field by providing an empirical evaluation on the performance of CDC architectures in the context of realtime data warehousing. CDC is a mechanism for providing data warehouse architectures with fresh data from Online Transaction Processing (OLTP) databases. There are two types of CDC architectures, pull architectures and push architectures. There is exiguous data on the performance of CDC architectures in a real-time environment. Performance data is required to determine the real-time viability of the two architectures. We propose that push CDC architectures are optimal for real-time CDC. However, push CDC architectures are seldom implemented because they are highly intrusive towards existing systems and arduous to maintain. As part of our contribution, we pragmatically develop a service based push CDC solution, which addresses the issues of intrusiveness and maintainability. Our solution uses Data Access Services (DAS) to decouple CDC logic from the applications. A requirement for the DAS is to place minimal overhead on a transaction in an OLTP environment. We synthesize DAS literature and pragmatically develop DAS that eciently execute transactions in an OLTP environment. Essentially we develop effeicient RESTful DAS, which expose Transactions As A Resource (TAAR). We evaluate the TAAR solution and three pull CDC mechanisms in a real-time environment, using the industry recognised TPC-C benchmark. The optimal CDC mechanism in a real-time environment, will capture change data with minimal latency and will have a negligible affect on the database's transactional throughput. Capture latency is the time it takes a CDC mechanism to capture a data change that has been applied to an OLTP database. A standard definition for capture latency and how to measure it does not exist in the field. We create this definition and extend the TPC-C benchmark to make the capture latency measurement. The results from our evaluation show that pull CDC is capable of real-time CDC at low levels of user concurrency. However, as the level of user concurrency scales upwards, pull CDC has a significant impact on the database's transaction rate, which affirms the theory that pull CDC architectures are not viable in a real-time architecture. TAAR CDC on the other hand is capable of real-time CDC, and places a minimal overhead on the transaction rate, although this performance is at the expense of CPU resources.