6 resultados para Morris, Robert, 1734-1806.

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to prepare gas-filled lipid-coated microbubbles as potential MRI contrast agents for imaging of fluid pressure. Air-filled microbubbles were produced with phospholipid 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) in the presence or absence of cholesterol and/or polyethylene-glycol distearate (PEG-distearate). Microbubbles were also prepared containing a fluorinated phospholipid, perfluoroalkylated glycerol-phosphatidylcholine, F-GPC shells encompassing perfluorohexane-saturated nitrogen gas. These microbubbles were evaluated in terms of physico-chemical characteristics such as size and stability. In parallel to these studies, DSPC microbubbles were also formulated containing nitrogen (N2) gas and compared to air-filled microbubbles. By preventing advection, signal drifts were used to assess their stability. DSPC microbubbles were found to have a drift of 20% signal change per bar of applied pressure in contrast to the F-GPC microbubbles which are considerably more stable with a lower drift of 5% signal change per bar of applied pressure. By increasing the pressure of the system and monitoring the MR signal intensity, the point at which the majority of the microbubbles have been damaged was determined. For the DSPC microbubbles this occurs at 1.3 bar whilst the F-GPC microbubbles withstand pressures up to 2.6 bar. For the comparison between air-filled and N2-filled microbubbles, the MRI sensitivity is assessed by cycling the pressure of the system and monitoring the MR signal intensity. It was found that the sensitivity exhibited by the N2-filled microbubbles remained constant, whilst the air-filled microbubbles demonstrated a continuous drop in sensitivity due to continuous bubble damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MRI of fluids containing lipid coated microbubbles has been shown to be an effective toot for measuring the local fluid pressure. However, the intrinsically buoyant nature of these microbubbles precludes lengthy measurements due to their vertical migration under gravity and pressure-induced coalescence. A novel preparation is presented which is shown to minimize both these effects for at least 25 min. By using a 2% polysaccharide gel base with a small concentration of glycerol and 1,2-distearoyl-sn-glycero-3-phosphocholine coated gas microbubbles, MR measurements are made for pressures between 0.95 and 1.44 bar. The signal drifts due to migration and amalgamation are shown to be minimized for such an experiment whilst yielding very high NMR sensitivities up to 38% signal change per bar.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although well known for delivering various pharmaceutical agents, liposomes can be prepared to entrap gas rather than aqueous media and have the potential to be used as pressure probes in magnetic resonance imaging (MRI). Using these gas-filled liposomes (GFL) as tracers, MRI imaging of pressure regions of a fluid flowing through a porous medium could be established. This knowledge can be exploited to enhance recovery of oil from the porous rock regions within oil fields. In the preliminary studies, we have optimized the lipid composition of GFL prepared using a simple homogenization technique and investigated key physico-chemical characteristics (size and the physical stability) and their efficacy as pressure probes. In contrast to the liposomes possessing an aqueous core which are prepared at temperatures above their phase transition temperature (Tc), homogenization of the phospholipids such as 1,2-dipalmitoyl-sn-glycero-3- phosphocholine (DPPC) or 1,2-distearoyl-sn-glycero-3-phosphocoline (DSPC) in aqueous medium below their Tc was found to be crucial in formation of stable GFL. DSPC based preparations yielded a GFL volume of more than five times compared to their DPPC counter part. Although the initial vesicle sizes of both DSPC and DPPC based GFL were about 10 μm, after 7 days storage at 25°C, the vesicle sizes of both formulations significantly (p < 0.05) increased to 28.3 ± 0.3 μm and 12.3 ± 1.0 μm, respectively. When the DPPC preparation was supplemented with cholesterol at a 1:0.5 or 1:1 molar ratio, significantly (p < 0.05) larger vesicles were formed (12-13 μm), however, compared to DPPC only vesicles, both cholesterol supplemented formulations displayed enhanced stability on storage indicating a stabilizing effect of cholesterol on these gas-filled vesicles. In order to induce surface charge on the GFL, DPPC and cholesterol (1: 0.5 molar ratio) liposomes were supplemented with a cationic surfactant, stearylamine, at a molar ratio of 0.25 or 0.125. Interestingly, the ζ potential values remained around neutrality at both stearylamine ratios suggesting the cationic surfactant was not incorporated within the bilayers of the GFL. Microscopic analysis of GFL confirmed the presence of spherical structures with a size distribution between 1-8 μm. This study has identified that DSPC based GFL in aqueous medium dispersed in 2% w/v methyl cellulose although yielded higher vesicle sizes over time were most stable under high pressures exerted in MRI. Copyright © Informa Healthcare USA, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents and demonstrates a method for using magnetic resonance imaging to measure local pressure of a fluid saturating a porous medium. The method is tested both in a static system of packed silica gel and in saturated sintered glass cylinders experiencing fluid flow. The fluid used contains 3% gas in the form of 3-μm average diameter gas filled 1,2-distearoyl-sn-glycero-3-phosphocholine (C18:0, MW: 790.16) liposomes suspended in 5% glycerol and 0.5% Methyl cellulose with water. Preliminary studies at 2.35 T demonstrate relative magnetic resonance signal changes of 20% per bar in bulk fluid for an echo time TE=40 ms, and 6-10% in consolidated porous media for TE=10 ms, over the range 0.8-1.8 bar for a spatial resolution of 0.1 mm3 and a temporal resolution of 30 s. The stability of this solution with relation to applied pressure and methods for improving sensitivity are discussed. © 2007 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents MRI measurements of a novel semi solid MR contrast agent to pressure. The agent is comprised of potassium chloride cross linked carageenan gum at a concentration of 2% w/v, with micron size lipid coated bubbles of air at a concentration of 3% v/v. The choice for an optimum suspending medium, the methods of production and the preliminary MRI results are presented herein. The carageenan gum is shown to be ideally elastic for compressions relating to volume changes less than 15%, in contrast to the inelastic gellan gum also tested. Although slightly lower than that of gellan gum, carageenan has a water diffusion coefficient of 1.72×10-9 m2.s-1 indicating its suitability to this purpose. RARE imaging is performed whilst simultaneously compressing test and control samples and a maximum sensitivity of 1.6% MR signal change per % volume change is found which is shown to be independent of proton density variations due to the presence of microbubbles and compression. This contrast agent could prove useful for numerous applications, and particularly in chemical engineering. More generally the method allows the user to non-invasively image with MRI any process that causes, within the solid, local changes either in bubble size or bubble shape. © 2008 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we demonstrate the potential of permanent magnet based magnetic resonance sensors to monitor and assess the extent of pore clogging in water filtration systems. The performance of the sensor was tested on artificially clogged gravel substrates and on gravel bed samples from constructed wetlands used to treat wastewater. Data indicate that the spin lattice relaxation time is linearly related to the hydraulic conductivity in such systems. In addition, within biologically active filters we demonstrate the ability to determine the relative ratio of biomass to abiotic solids, a measurement which is not possible using alternative techniques. © 2011 The Royal Society of Chemistry.