3 resultados para Monozyten, dendritische Zellen, Makrophagen, DNA-Reparatur, ROS, Ionisierende Strahlung, Temozolomid

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA is susceptible to damage by reactive oxygen species (ROS). ROS are produced during normal and pathophysiological processes in addition to ionizing radiation, environmental mutagens, and carcinogens. 8-oxo-2′-deoxyguanosine (8-oxodG) is probably one of the most abundant DNA lesion formed during oxidative stress. This potentially mutagenic lesion causes G → T transversions and is therefore an important candidate lesion for repair, particularly in mammalian cells. Several pathways exist for the removal, or repair, of this lesion from mammalian DNA. The most established is via the base excision repair enzyme, human 8-oxoguanine glycosylase (hOgg1), which acts in combination with the human apurinic endonuclease (hApe). The latter is known to respond to regulation by redox reactions and may act in combination with hOgg1. We discuss evidence in this review article concerning alternative pathways in humans, such as nucleotide excision repair (NER), which could possibly remove the 8-oxodG lesion. We also propose that redox-active components of the diet, such as vitamin C, may promote such repair, affecting NER specifically. © 2002 Elsevier Science Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relevance of reactive oxygen species (ROS) in the pathogenesis of inflammatory diseases is widely documented. Immunochemical detection of ROS DNA adducts has been developed, however, recognition of glyoxal-DNA adducts has not previously been described. We have generated a polyclonal antibody that has shown increased antibody binding to ROS-modified DNA in comparison to native DNA. In addition, dose-dependent antibody binding to DNA modified with ascorbate alone was shown, with significant inhibition by desferrioxamine, catalase, and ethanol. Minimal inhibition was observed with uric acid, 1,10-phenanthroline and DMSO. However, antibody binding in the presence of EDTA increased 3500-fold. The involvement of hydrogen peroxide and hydroxyl radical in ascorbate-mediated DNA damage is consistent with ascorbate acting as a reducing agent for DNA-bound metal ions. Glyoxal is known to be formed during oxidation of ascorbate. Glyoxylated DNA, that previously had been proposed as a marker of oxidative damage, was recognised in a dose dependent manner using the antibody. We describe the potential use of our anti-ROS DNA antibody, that detects predominantly Fenton-type mediated damage to DNA and report on its specificity for the recognition of glyoxal-DNA adducts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reactive oxygen species (ROS) are released at sites of inflammation during the respiratory burst which accompanies the phagocytic process. Using an in vitro system to simulate this process we have shown that ROS induce antigenic changes in DNA. More specifically, results of experiments using ROS scavengers have shown that hydroxyl radicals produced in close proximity to DNA-bound metal ions play a predominant role. ROS-mediated attack resulted in increased binding of anti-DNA antibodies to the denatured DNA. These changes were detected using IgG, IgA and IgM isotype binding to antibodies in systemic lupus erythematosus sera. Of these the IgA isotype was most discriminating in its detection of hydroxyl radical-induced damage.