2 resultados para Mononuclear Phagocyte System

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a growing body of experimental evidence suggesting that the gastrointestinal tract (GIT) may be penetrated by sub-micron sized polymeric particles which have the capacity to deliver therapeutic compounds. We investigated this, initially with Fluoresbrite™ carboxylate latex microspheres (0.87 m diameter) which were administered orally to rats. Microsphere numbers within blood samples were then quantified using fluorescence microscopy or FACS technology. These studies were prone to quantitative error, but indicated that increased microsphere translocation occurred if particles were administered in conjunction with large volumes of hypotonic liquid, and that uptake was very rapid. Test particles were detected in blood, only a few minutes after dosing. To improve quantification, GPC technology was adopted. 0.22 m latex particles were found to accumulate in greatest numbers within the Mononuclear phagocyte system tissues after gavage. Again translocation was rapid. The ability of test particles to leave the intestinal lumen and access systemic compartments was found to be highly dependent on their size and hydrophobicity, determined by hydrophobic interaction chromatography. Considerably lower numbers of 0.97 m diameter latex microspheres were detectable within extra-intestinal tissue locations after gavage. Histological studies showed that Fluoresbrite™ microspheres accumulate within the liver, spleen, Mesenteric lymph node and vasculature of rats after oral administration. Fluorescent particles were observed in both the Peyer's patches (PPs), and non lymphoid regions of rat intestinal mucosa after gavage, conductive to the acceptance that more than one mechanism of particle absorption may operate.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Phagocytic cells produce a variety of oxidants as part of the immune defence, which react readily both with proteins and lipids, and could contribute to the oxidation of low density lipoprotein in atherosclerosis. We have investigated the oxidation of phospholipid vesicles by isolated human polymorphonuclear and mononuclear leukocytes, to provide a model of lipid oxidation in the absence of competing protein. PMA-stimulated cells were incubated with phospholipid vesicles contammg dipalmitoyl phosphatidylcholine (DPPC), palmitoyl-arachidonoyl phosphatidylcholine (PAPC), and stearoyl-oleoyl phosphatidylcholine (SOPC), before extraction of the lipids for analysis by HPLC coupled to electrospray mass spectrometry. In this system, oxidized phosphatidylcholines elute earlier than the native lipids owing to their decreased hydrophobicity, and can be identified according to their molecular mass. The formation of monohydroperoxides of P APC was observed routinely, together with low levels of hydroxides, but no chlorohydrin derivatives of P APC or SOPC were detected. However, the major oxidized product occurred at 828 m/z, and was identified as I-palmitoyl-2-(5,6-epoxyisoprostane E2)-sn-glycero-3-phosphocholine. These results show that phagocytes triggered by PMA cause oxidative damage to lipids predominantly by free radical mechanisms, and that electrophilic addition involving HOCl is not a major mechanism of attack. The contribution of myeloperoxidase and metal ions to the oxidation process is currently being investigated, and preliminary data suggest that myeloperoxidase-derived oxidants are responsible for the epoxyisoprostane phospholipid formation. The identification of an epoxyisoprostane phospholipid as the major product following phagocyte-induced phospholipid oxidation is novel and has implications for phagocyte involvement in atherogenesis.