5 resultados para Molecular detection
em Aston University Research Archive
Resumo:
Auditory detection thresholds for certain frequencies of both amplitude modulated (AM) and frequency modulated (FM) dynamic auditory stimuli are associated with reading in typically developing and dyslexic readers. We present the first behavioral and molecular genetic characterization of these two auditory traits. Two extant extended family datasets were given reading tasks and psychoacoustic tasks to determine FM 2 Hz and AM 20 Hz sensitivity thresholds. Univariate heritabilities were significant for both AM (h2 = 0.20) and FM (h2 = 0.29). Bayesian posterior probability of linkage (PPL) analysis found loci for AM (12q, PPL = 81 %) and FM (10p, PPL = 32 %; 20q, PPL = 65 %). Bivariate heritability analyses revealed that FM is genetically correlated with reading, while AM was not. Bivariate PPL analysis indicates that FM loci (10p, 20q) are not also associated with reading.
Resumo:
Proteins can undergo a wide variety of oxidative post-translational modifications (oxPTM); while reversible modifications are thought to be relevant in physiological processes, non-reversible oxPTM may contribute to pathological situations and disease. The oxidant is also important in determining the type of oxPTM, such as oxidation, chlorination or nitration. The best characterized oxPTMs involved in signalling modulation are partial oxidations of cysteine to disulfide, glutathionylated or sulfenic acid forms that can be reversed by thiol reductants. Proline hydroxylation in HIF signalling is also quite well characterized, and there is increasing evidence that specific oxidations of methionine and tyrosine may have some biological roles. For some proteins regulated by cysteine oxidation, the residues and molecular mechanism involved have been extensively studied and are well understood, such as the protein tyrosine phosphatase PTP1B and MAP3 kinase ASK1, as well as transcription factor complex Keap1-Nrf2. The advances in understanding of the role oxPTMs in signalling have been facilitated by advances in analytical technology, in particular tandem mass spectrometry techniques. Combinations of peptide sequencing by collisionally induced dissociation and precursor ion scanning or neutral loss to select for specific oxPTMs have proved very useful for identifying oxidatively modified proteins and mapping the sites of oxidation. The development of specific labelling and enrichment procedures for S-nitrosylation or disulfide formation has proved invaluable, and there is ongoing work to establish analogous methods for detection of nitrotyrosine and other modifications.
Resumo:
Monoclonal and polyclonaI antibodies have been produced for use in immunological assays for the detection of Burkholderia pseudomallei and Burkholderia mallei. Monoclonal antibodies recognising a high molecular weight polysaccharide material found in some strains of both species have been shown to be effective in recognising B. pseudomallei and B. mallei and distinguishing them from other organisms. The high molecular weight polysaccharide material is thought to be the capsule of B. pseudomallei and B. mallei and may have important links with virulence. B. pseudomallei and B. mallei are known to be closely related, sharing many epitopes, but antigenic variation has been demonstrated within both the species. The lipopolysaccharide from strains of B. pseudomal/ei and B. mallei has been isolated and the silver stain profiles found to be visually very similar. A monoclonal antibody raised to B. mallei LPS has been found to recognise both B. mallei and B. pseudomallei strains. However, in a small number of B. pseudomallei strains a visually atypical LPS profile has been demonstrated. A monoclonal ant ibody rai sed against this atypical LPS showed no recognition of the typical LPS profile of either B. mallei or B. pseudomallei. This atypical LPS structure has not been reported and may be immunologically distinct from the typical LPS. Molecular biology and antibody engineering techniques have been used in an attempt to produce single-chain antibody fragments reactive to B. pseudomallei. Sequencing of one of the single-chain antibody fragments produced showed high homology with murine immunoglobulin genes, but none of the single-chain antibody fragments were found to be specific to B. pselldomallei.
Resumo:
Many factors can be, and have been, attributed to the appearance of complications in lens wear, but the greatest is associated with deposition. Reduced acuity, irritation and inflammatory responses are often referred to as adverse reactions arising as a result of deposition. In this study, particular attention was paid to the potential role of adsorbed proteins in activating, mediating and/or stimulating a host immune response, i.e., the hypothesis that the adsorption of certain proteins from the tears and ocular surfaces may actively affect successful lens wear. In particular, the purpose of this study was to investigate the presence of a group of proteins previously undiscovered in the ocular environment. The intention was to target a family of proteins/glycoproteins that have become prominent recently in a variety of inflammatory responses and disorders at many other mucosal associated sites around the body, e.g. in nasal rhinitis and in joint inflammation. The protein cascade in question is the kinin family of inflammatory mediators. The aim was to investigate their presence in the ocular environment, specifically in relation to contact lens wear, and consequently assess the implications of their discovery. High molecular weight kininogen (HMWK), with its central role in kinin responses, was investigated initially as the marker of kinin activity, with subsequent members examined thereafter.
Resumo:
The multifunctional properties of carbon nanotubes (CNTs) make them a powerful platform for unprecedented innovations in a variety of practical applications. As a result of the surging growth of nanotechnology, nanotubes present a potential problem as an environmental pollutant, and as such, an efficient method for their rapid detection must be established. Here, we propose a novel type of ionic sensor complex for detecting CNTs – an organic dye that responds sensitively and selectively to CNTs with a photoluminescent signal. The complexes are formed through Coulomb attractions between dye molecules with uncompensated charges and CNTs covered with an ionic surfactant in water. We demonstrate that the photoluminescent excitation of the dye can be transferred to the nanotubes, resulting in selective and strong amplification (up to a factor of 6) of the light emission from the excitonic levels of CNTs in the near-infrared spectral range, as experimentally observed via excitation-emission photoluminescence (PL) mapping. The chirality of the nanotubes and the type of ionic surfactant used to disperse the nanotubes both strongly affect the amplification; thus, the complexation provides sensing selectivity towards specific CNTs. Additionally, neither similar uncharged dyes nor CNTs covered with neutral surfactant form such complexes. As model organic molecules, we use a family of polymethine dyes with an easily tailorable molecular structure and, consequently, tunable absorbance and PL characteristics. This provides us with a versatile tool for the controllable photonic and electronic engineering of an efficient probe for CNT detection.