4 resultados para Molecular classification
em Aston University Research Archive
Resumo:
Abnormal protein aggregates, in the form of either extracellular plaques or intracellular inclusions, are an important pathological feature of the majority of neurodegenerative disorders. The major molecular constituents of these lesions, viz., beta-amyloid (Abeta), tau, and alpha-synuclein, have played a defining role in the diagnosis and classification of disease and in studies of pathogenesis. The molecular composition of a protein aggregate, however, is often complex and could be the direct or indirect consequence of a pathogenic gene mutation, be the result of cell degeneration, or reflect the acquisition of new substances by diffusion and molecular binding to existing proteins. This review examines the molecular composition of the major protein aggregates found in the neurodegenerative diseases including the Abeta and prion protein (PrP) plaques found in Alzheimer's disease (AD) and prion disease, respectively, and the cellular inclusions found in the tauopathies and synucleinopathies. The data suggest that the molecular constituents of a protein aggregate do not directly cause cell death but are largely the consequence of cell degeneration or are acquired during the disease process. These findings are discussed in relation to diagnosis and to studies of to disease pathogenesis.
Resumo:
The G-protein coupled receptors--or GPCRs--comprise simultaneously one of the largest and one of the most multi-functional protein families known to modern-day molecular bioscience. From a drug discovery and pharmaceutical industry perspective, the GPCRs constitute one of the most commercially and economically important groups of proteins known. The GPCRs undertake numerous vital metabolic functions and interact with a hugely diverse range of small and large ligands. Many different methodologies have been developed to efficiently and accurately classify the GPCRs. These range from motif-based techniques to machine learning as well as a variety of alignment-free techniques based on the physiochemical properties of sequences. We review here the available methodologies for the classification of GPCRs. Part of this work focuses on how we have tried to build the intrinsically hierarchical nature of sequence relations, implicit within the family, into an adaptive approach to classification. Importantly, we also allude to some of the key innate problems in developing an effective approach to classifying the GPCRs: the lack of sequence similarity between the six classes that comprise the GPCR family and the low sequence similarity to other family members evinced by many newly revealed members of the family.
Resumo:
The traditional method of classifying neurodegenerative diseases is based on the original clinico-pathological concept supported by 'consensus' criteria and data from molecular pathological studies. This review discusses first, current problems in classification resulting from the coexistence of different classificatory schemes, the presence of disease heterogeneity and multiple pathologies, the use of 'signature' brain lesions in diagnosis, and the existence of pathological processes common to different diseases. Second, three models of neurodegenerative disease are proposed: (1) that distinct diseases exist ('discrete' model), (2) that relatively distinct diseases exist but exhibit overlapping features ('overlap' model), and (3) that distinct diseases do not exist and neurodegenerative disease is a 'continuum' in which there is continuous variation in clinical/pathological features from one case to another ('continuum' model). Third, to distinguish between models, the distribution of the most important molecular 'signature' lesions across the different diseases is reviewed. Such lesions often have poor 'fidelity', i.e., they are not unique to individual disorders but are distributed across many diseases consistent with the overlap or continuum models. Fourth, the question of whether the current classificatory system should be rejected is considered and three alternatives are proposed, viz., objective classification, classification for convenience (a 'dissection'), or analysis as a continuum.
Resumo:
Biological experiments often produce enormous amount of data, which are usually analyzed by data clustering. Cluster analysis refers to statistical methods that are used to assign data with similar properties into several smaller, more meaningful groups. Two commonly used clustering techniques are introduced in the following section: principal component analysis (PCA) and hierarchical clustering. PCA calculates the variance between variables and groups them into a few uncorrelated groups or principal components (PCs) that are orthogonal to each other. Hierarchical clustering is carried out by separating data into many clusters and merging similar clusters together. Here, we use an example of human leukocyte antigen (HLA) supertype classification to demonstrate the usage of the two methods. Two programs, Generating Optimal Linear Partial Least Square Estimations (GOLPE) and Sybyl, are used for PCA and hierarchical clustering, respectively. However, the reader should bear in mind that the methods have been incorporated into other software as well, such as SIMCA, statistiXL, and R.