23 resultados para Modeling approach
em Aston University Research Archive
Resumo:
Sentiment analysis has long focused on binary classification of text as either positive or negative. There has been few work on mapping sentiments or emotions into multiple dimensions. This paper studies a Bayesian modeling approach to multi-class sentiment classification and multidimensional sentiment distributions prediction. It proposes effective mechanisms to incorporate supervised information such as labeled feature constraints and document-level sentiment distributions derived from the training data into model learning. We have evaluated our approach on the datasets collected from the confession section of the Experience Project website where people share their life experiences and personal stories. Our results show that using the latent representation of the training documents derived from our approach as features to build a maximum entropy classifier outperforms other approaches on multi-class sentiment classification. In the more difficult task of multi-dimensional sentiment distributions prediction, our approach gives superior performance compared to a few competitive baselines. © 2012 ACM.
Resumo:
Dynamically adaptive systems (DASs) are intended to monitor the execution environment and then dynamically adapt their behavior in response to changing environmental conditions. The uncertainty of the execution environment is a major motivation for dynamic adaptation; it is impossible to know at development time all of the possible combinations of environmental conditions that will be encountered. To date, the work performed in requirements engineering for a DAS includes requirements monitoring and reasoning about the correctness of adaptations, where the DAS requirements are assumed to exist. This paper introduces a goal-based modeling approach to develop the requirements for a DAS, while explicitly factoring uncertainty into the process and resulting requirements. We introduce a variation of threat modeling to identify sources of uncertainty and demonstrate how the RELAX specification language can be used to specify more flexible requirements within a goal model to handle the uncertainty. © 2009 Springer Berlin Heidelberg.
Resumo:
Poverty alleviation and social upliftment of rural India is closely linked with the availability and use of energy for development. At the same time, sustainable supply of clean and affordable renewable energy sources is required if development is to be sustainable, so that it does not cause any environmental problems. The purpose of this paper is to determine the key variables of renewable energy implementation for sustainable development, on which the top management should focus. In this paper, an interpretive structural modeling (ISM) - based approach has been employed to model the implementation variables of renewable energy for sustainable development. These variables have been categorized under ‘enablers’ that help to increase the implementation of renewable energy for sustainable development. A major finding of this research is that public awareness regarding renewable energy for sustainable development is a very significant enabler. In this paper, an interpretation of variables of renewable energy for sustainable development in terms of their driving and dependence powers has been examined. For better results, top management should focus on improving the high-driving power enablers such as leadership, strategic planning, public awareness, top management support, availability of finance, government support, and support from interest groups.
Resumo:
Using a novel modeling approach, and cross-country firm level data for the textiles industry, we examine the impact of institutional quality on firm performance. Our methodology allows us to estimate the marginal impact of institutional quality on productivity of each firm. Our results bring into question conventional wisdom about the desirable characteristics of market institutions, which is based on empirical evidence about the impact of institutional quality on the average firm. We demonstrate, for example, that once both the direct impact of a change in institutional quality on total factor productivity and the indirect impact through changes in efficiency of use of factor inputs are taken into account, an increase in labor market rigidity may have a positive impact on firm output, at least for some firms. We also demonstrate that there are significant intra-country variations in the marginal impact of institutional quality, such that the characteristics of “winners” and “losers” will have to be taken into account before policy is introduced to change institutional quality in any direction.
Resumo:
When applying multivariate analysis techniques in information systems and social science disciplines, such as management information systems (MIS) and marketing, the assumption that the empirical data originate from a single homogeneous population is often unrealistic. When applying a causal modeling approach, such as partial least squares (PLS) path modeling, segmentation is a key issue in coping with the problem of heterogeneity in estimated cause-and-effect relationships. This chapter presents a new PLS path modeling approach which classifies units on the basis of the heterogeneity of the estimates in the inner model. If unobserved heterogeneity significantly affects the estimated path model relationships on the aggregate data level, the methodology will allow homogenous groups of observations to be created that exhibit distinctive path model estimates. The approach will, thus, provide differentiated analytical outcomes that permit more precise interpretations of each segment formed. An application on a large data set in an example of the American customer satisfaction index (ACSI) substantiates the methodology’s effectiveness in evaluating PLS path modeling results.
Resumo:
In examining bank cost efficiency in banking inclusion of risk-taking of banks is very important. In this paper we depart from the standard modeling approach and view risk intimately related to the technology. Thus, instead of controlling for risk by viewing them as covariates in the standard cost function we argue that the technology differs with risk, thereby meaning that the parameters of the parametric cost function changes with risk in a fully flexible manner. This is accomplished by viewing the parameters of the cost function as nonparametric functions of risk. We also control for country-specific effects in a fully flexible manner by using them as arguments of the nonparametric functions along with the risk variable. The resulting cost function then becomes semiparametric. The standard parametric model becomes a special case of our semiparametric model. We use the above modeling approach for banks in the EU countries. Actually, European financial integration is seen as a stepping stone for the development of a competitive single EU market that promotes efficiency and increases consumer welfare, changing the risk profile of the European banks. Particularly, financial integration allows more risk diversification and permits banks to use more advanced risk management instruments and systems, however it has at the same time increased the probability of systematic risks. Financial integration has increased the risk of contagion and changed its nature and scope. Consequently the bank’s risk seems to be an important issue to be investigated.
Resumo:
Most object-based approaches to Geographical Information Systems (GIS) have concentrated on the representation of geometric properties of objects in terms of fixed geometry. In our road traffic marking application domain we have a requirement to represent the static locations of the road markings but also enforce the associated regulations, which are typically geometric in nature. For example a give way line of a pedestrian crossing in the UK must be within 1100-3000 mm of the edge of the crossing pattern. In previous studies of the application of spatial rules (often called 'business logic') in GIS emphasis has been placed on the representation of topological constraints and data integrity checks. There is very little GIS literature that describes models for geometric rules, although there are some examples in the Computer Aided Design (CAD) literature. This paper introduces some of the ideas from so called variational CAD models to the GIS application domain, and extends these using a Geography Markup Language (GML) based representation. In our application we have an additional requirement; the geometric rules are often changed and vary from country to country so should be represented in a flexible manner. In this paper we describe an elegant solution to the representation of geometric rules, such as requiring lines to be offset from other objects. The method uses a feature-property model embraced in GML 3.1 and extends the possible relationships in feature collections to permit the application of parameterized geometric constraints to sub features. We show the parametric rule model we have developed and discuss the advantage of using simple parametric expressions in the rule base. We discuss the possibilities and limitations of our approach and relate our data model to GML 3.1. © 2006 Springer-Verlag Berlin Heidelberg.
Resumo:
Are persistent marketing effects most likely to appear right after the introduction of a product? The authors give an affirmative answer to this question by developing a model that explicitly reports how persistent and transient marketing effects evolve over time. The proposed model provides managers with a valuable tool to evaluate their allocation of marketing expenditures over time. An application of the model to many pharmaceutical products, estimated through (exact initial) Kalman filtering, indicates that both persistent and transient effects occur predominantly immediately after a brand's introduction. Subsequently, the size of the effects declines. The authors theoretically and empirically compare their methodology with methodology based on unit root testing and demonstrate that the need for unit root tests creates difficulties in applying conventional persistence modeling. The authors recommend that marketing models should either accommodate persistent effects that change over time or be applied to mature brands or limited time windows only.
Resumo:
The inverse controller is traditionally assumed to be a deterministic function. This paper presents a pedagogical methodology for estimating the stochastic model of the inverse controller. The proposed method is based on Bayes' theorem. Using Bayes' rule to obtain the stochastic model of the inverse controller allows the use of knowledge of uncertainty from both the inverse and the forward model in estimating the optimal control signal. The paper presents the methodology for general nonlinear systems. For illustration purposes, the proposed methodology is applied to linear Gaussian systems. © 2004 IEEE.
Resumo:
Purpose: The purpose of this paper is to describe how the application of systems thinking to designing, managing and improving business processes has resulted in a new and unique holonic-based process modeling methodology know as process orientated holonic modeling. Design/methodology/approach: The paper describes key systems thinking axioms that are built upon in an overview of the methodology; the techniques are described using an example taken from a large organization designing and manufacturing capital goods equipment operating within a complex and dynamic environment. These were produced in an 18 month project, using an action research approach, to improve quality and process efficiency. Findings: The findings of this research show that this new methodology can support process depiction and improvement in industrial sectors which are characterized by environments of high variety and low volume (e.g. projects; such as the design and manufacture of a radar system or a hybrid production process) which do not provide repetitive learning opportunities. In such circumstances, the methodology has not only been able to deliver holonic-based process diagrams but also been able to transfer strategic vision from top management to middle and operational levels without being reductionistic. Originality/value: This paper will be of interest to organizational analysts looking at large complex projects whom require a methodology that does not confine them to thinking reductionistically in "task-breakdown" based approaches. The novel ideas in this paper have great impact on the way analysts should perceive organizational processes. Future research is applying the methodology in similar environments in other industries. © Emerald Group Publishing Limited.
Resumo:
The application of systems thinking to designing, managing, and improving business processes has developed a new "holonic-based" process modeling methodology. The theoretical background and the methodology are described using examples taken from a large organization designing and manufacturing capital goods equipment operating within a complex and dynamic environment. A key point of differentiation attributed to this methodology is that it allows a set of models to be produced without taking a task breakdown approach but instead uses systems thinking and a construct known as the "holon" to build process descriptions as a system of systems (i.e., a holarchy). The process-oriented holonic modeling methodology has been used for total quality management and business process engineering exercises in different industrial sectors and builds models that connect the strategic vision of a company to its operational processes. Exercises have been conducted in response to environmental pressures to make operations align with strategic thinking as well as becoming increasingly agile and efficient. This unique methodology is best applied in environments of high complexity, low volume, and high variety, where repeated learning opportunities are few and far between (e.g., large development projects). © 2007 IEEE.
Resumo:
The CancerGrid consortium is developing open-standards cancer informatics to address the challenges posed by modern cancer clinical trials. This paper presents the service-oriented software paradigm implemented in CancerGrid to derive clinical trial information management systems for collaborative cancer research across multiple institutions. Our proposal is founded on a combination of a clinical trial (meta)model and WSRF (Web Services Resource Framework), and is currently being evaluated for use in early phase trials. Although primarily targeted at cancer research, our approach is readily applicable to other areas for which a similar information model is available.
Resumo:
The objective of this work was to design, construct and commission a new ablative pyrolysis reactor and a high efficiency product collection system. The reactor was to have a nominal throughput of 10 kg/11r of dry biomass and be inherently scalable up to an industrial scale application of 10 tones/hr. The whole process consists of a bladed ablative pyrolysis reactor, two high efficiency cyclones for char removal and a disk and doughnut quench column combined with a wet walled electrostatic precipitator, which is directly mounted on top, for liquids collection. In order to aid design and scale-up calculations, detailed mathematical modelling was undertaken of the reaction system enabling sizes, efficiencies and operating conditions to be determined. Specifically, a modular approach was taken due to the iterative nature of some of the design methodologies, with the output from one module being the input to the next. Separate modules were developed for the determination of the biomass ablation rate, specification of the reactor capacity, cyclone design, quench column design and electrostatic precipitator design. These models enabled a rigorous design protocol to be developed capable of specifying the required reactor and product collection system size for specified biomass throughputs, operating conditions and collection efficiencies. The reactor proved capable of generating an ablation rate of 0.63 mm/s for pine wood at a temperature of 525 'DC with a relative velocity between the heated surface and reacting biomass particle of 12.1 m/s. The reactor achieved a maximum throughput of 2.3 kg/hr, which was the maximum the biomass feeder could supply. The reactor is capable of being operated at a far higher throughput but this would require a new feeder and drive motor to be purchased. Modelling showed that the reactor is capable of achieving a reactor throughput of approximately 30 kg/hr. This is an area that should be considered for the future as the reactor is currently operating well below its theoretical maximum. Calculations show that the current product collection system could operate efficiently up to a maximum feed rate of 10 kg/Fir, provided the inert gas supply was adjusted accordingly to keep the vapour residence time in the electrostatic precipitator above one second. Operation above 10 kg/hr would require some modifications to the product collection system. Eight experimental runs were documented and considered successful, more were attempted but due to equipment failure had to be abandoned. This does not detract from the fact that the reactor and product collection system design was extremely efficient. The maximum total liquid yield was 64.9 % liquid yields on a dry wood fed basis. It is considered that the liquid yield would have been higher had there been sufficient development time to overcome certain operational difficulties and if longer operating runs had been attempted to offset product losses occurring due to the difficulties in collecting all available product from a large scale collection unit. The liquids collection system was highly efficient and modeling determined a liquid collection efficiency of above 99% on a mass basis. This was validated due to the fact that a dry ice/acetone condenser and a cotton wool filter downstream of the collection unit enabled mass measurements of the amount of condensable product exiting the product collection unit. This showed that the collection efficiency was in excess of 99% on a mass basis.
Resumo:
The number of interoperable research infrastructures has increased significantly with the growing awareness of the efforts made by the Global Earth Observation System of Systems (GEOSS). One of the Societal Benefit Areas (SBA) that is benefiting most from GEOSS is biodiversity, given the costs of monitoring the environment and managing complex information, from space observations to species records including their genetic characteristics. But GEOSS goes beyond simple data sharing to encourage the publishing and combination of models, an approach which can ease the handling of complex multi-disciplinary questions. It is the purpose of this paper to illustrate these concepts by presenting eHabitat, a basic Web Processing Service (WPS) for computing the likelihood of finding ecosystems with equal properties to those specified by a user. When chained with other services providing data on climate change, eHabitat can be used for ecological forecasting and becomes a useful tool for decision-makers assessing different strategies when selecting new areas to protect. eHabitat can use virtually any kind of thematic data that can be considered as useful when defining ecosystems and their future persistence under different climatic or development scenarios. The paper will present the architecture and illustrate the concepts through case studies which forecast the impact of climate change on protected areas or on the ecological niche of an African bird.
Resumo:
Self-adaptation is emerging as an increasingly important capability for many applications, particularly those deployed in dynamically changing environments, such as ecosystem monitoring and disaster management. One key challenge posed by Dynamically Adaptive Systems (DASs) is the need to handle changes to the requirements and corresponding behavior of a DAS in response to varying environmental conditions. Berry et al. previously identified four levels of RE that should be performed for a DAS. In this paper, we propose the Levels of RE for Modeling that reify the original levels to describe RE modeling work done by DAS developers. Specifically, we identify four types of developers: the system developer, the adaptation scenario developer, the adaptation infrastructure developer, and the DAS research community. Each level corresponds to the work of a different type of developer to construct goal model(s) specifying their requirements. We then leverage the Levels of RE for Modeling to propose two complementary processes for performing RE for a DAS. We describe our experiences with applying this approach to GridStix, an adaptive flood warning system, deployed to monitor the River Ribble in Yorkshire, England.