26 resultados para Modeling and simulation

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aggregation and caking of particles are common severe problems in many operations and processing of granular materials, where granulated sugar is an important example. Prevention of aggregation and caking of granular materials requires a good understanding of moisture migration and caking mechanisms. In this paper, the modeling of solid bridge formation between particles is introduced, based on moisture migration of atmospheric moisture into containers packed with granular materials through vapor evaporation and condensation. A model for the caking process is then developed, based on the growth of liquid bridges (during condensation), and their hardening and subsequent creation of solid bridges (during evaporation). The predicted caking strengths agree well with some available experimental data on granulated sugar under storage conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The potential for the use of DEA and simulation in a mutually supporting role in guiding operating units to improved performance is presented. An analysis following a three-stage process is suggested. Stage one involves obtaining the data for the DEA analysis. This can be sourced from historical data, simulated data or a combination of the two. Stage two involves the DEA analysis that identifies benchmark operating units. In the third stage simulation can now be used in order to offer practical guidance to operating units towards improved performance. This can be achieved by the use of sensitivity analysis of the benchmark unit using a simulation model to offer direct support as to the feasibility and efficiency of any variations in operating practices to be tested. Alternatively, the simulation can be used as a mechanism to transmit the practices of the benchmark unit to weaker performing units by building a simulation model of the weaker unit to the process design of the benchmark unit. The model can then compare performance of the current and benchmark process designs. Quantifying improvement in this way provides a useful driver to any process change initiative that is required to bring the performance of weaker units up to the best in class. © 2005 Operational Research Society Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cellular mobile radio systems will be of increasing importance in the future. This thesis describes research work concerned with the teletraffic capacity and the canputer control requirements of such systems. The work involves theoretical analysis and experimental investigations using digital computer simulation. New formulas are derived for the congestion in single-cell systems in which there are both land-to-mobile and mobile-to-mobile calls and in which mobile-to-mobile calls go via the base station. Two approaches are used, the first yields modified forms of the familiar Erlang and Engset formulas, while the second gives more complicated but more accurate formulas. The results of computer simulations to establish the accuracy of the formulas are described. New teletraffic formulas are also derived for the congestion in multi -cell systems. Fixed, dynamic and hybrid channel assignments are considered. The formulas agree with previously published simulation results. Simulation programs are described for the evaluation of the speech traffic of mobiles and for the investigation of a possible computer network for the control of the speech traffic. The programs were developed according to the structured progranming approach leading to programs of modular construction. Two simulation methods are used for the speech traffic: the roulette method and the time-true method. The first is economical but has some restriction, while the second is expensive but gives comprehensive answers. The proposed control network operates at three hierarchical levels performing various control functions which include: the setting-up and clearing-down of calls, the hand-over of calls between cells and the address-changing of mobiles travelling between cities. The results demonstrate the feasibility of the control netwvork and indicate that small mini -computers inter-connected via voice grade data channels would be capable of providing satisfactory control

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The investigation of insulation debris generation, transport, and sedimentation becomes more important with regard to reactor safety research for pressurized water reactors and boiling water reactors when considering the long-term behavior of emergency core coolant systems during all types of loss-of-coolant accidents (LOCAs). The insulation debris released near the break during a LOCA incident consists of a mixture of disparate particle populations that varies with size, shape, consistency, and other properties. Some fractions of the released insulation debris can be transported into the reactor sump, where it may perturb/impinge on the emergency core cooling systems. Open questions of generic interest are, for example, the particle load on strainers and corresponding pressure drop, the sedimentation of the insulation debris in a water pool, and its possible resuspension and transport in the sump water flow. A joint research project on such questions is being performed in cooperation with the University of Applied Sciences Zittau/Görlitz. The project deals with the experimental investigation and the development of computational fluid dynamics (CFD) models for the description of particle transport phenomena in coolant flow. While the experiments are performed at the University of Applied Sciences Zittau/Görlitz, the theoretical work is concentrated at Forschungszentrum Dresden-Rossendorf. In the current paper the basic concepts for CFD modeling are described and feasibility studies including the conceptual design of the experiments are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to design, construct and commission a new ablative pyrolysis reactor and a high efficiency product collection system. The reactor was to have a nominal throughput of 10 kg/11r of dry biomass and be inherently scalable up to an industrial scale application of 10 tones/hr. The whole process consists of a bladed ablative pyrolysis reactor, two high efficiency cyclones for char removal and a disk and doughnut quench column combined with a wet walled electrostatic precipitator, which is directly mounted on top, for liquids collection. In order to aid design and scale-up calculations, detailed mathematical modelling was undertaken of the reaction system enabling sizes, efficiencies and operating conditions to be determined. Specifically, a modular approach was taken due to the iterative nature of some of the design methodologies, with the output from one module being the input to the next. Separate modules were developed for the determination of the biomass ablation rate, specification of the reactor capacity, cyclone design, quench column design and electrostatic precipitator design. These models enabled a rigorous design protocol to be developed capable of specifying the required reactor and product collection system size for specified biomass throughputs, operating conditions and collection efficiencies. The reactor proved capable of generating an ablation rate of 0.63 mm/s for pine wood at a temperature of 525 'DC with a relative velocity between the heated surface and reacting biomass particle of 12.1 m/s. The reactor achieved a maximum throughput of 2.3 kg/hr, which was the maximum the biomass feeder could supply. The reactor is capable of being operated at a far higher throughput but this would require a new feeder and drive motor to be purchased. Modelling showed that the reactor is capable of achieving a reactor throughput of approximately 30 kg/hr. This is an area that should be considered for the future as the reactor is currently operating well below its theoretical maximum. Calculations show that the current product collection system could operate efficiently up to a maximum feed rate of 10 kg/Fir, provided the inert gas supply was adjusted accordingly to keep the vapour residence time in the electrostatic precipitator above one second. Operation above 10 kg/hr would require some modifications to the product collection system. Eight experimental runs were documented and considered successful, more were attempted but due to equipment failure had to be abandoned. This does not detract from the fact that the reactor and product collection system design was extremely efficient. The maximum total liquid yield was 64.9 % liquid yields on a dry wood fed basis. It is considered that the liquid yield would have been higher had there been sufficient development time to overcome certain operational difficulties and if longer operating runs had been attempted to offset product losses occurring due to the difficulties in collecting all available product from a large scale collection unit. The liquids collection system was highly efficient and modeling determined a liquid collection efficiency of above 99% on a mass basis. This was validated due to the fact that a dry ice/acetone condenser and a cotton wool filter downstream of the collection unit enabled mass measurements of the amount of condensable product exiting the product collection unit. This showed that the collection efficiency was in excess of 99% on a mass basis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The investigation of insulation debris generation, transport and sedimentation becomes important with regard to reactor safety research for PWR and BWR, when considering the long-term behavior of emergency core cooling systems during all types of loss of coolant accidents (LOCA). The insulation debris released near the break during a LOCA incident consists of a mixture of disparate particle population that varies with size, shape, consistency and other properties. Some fractions of the released insulation debris can be transported into the reactor sump, where it may perturb/impinge on the emergency core cooling systems. Open questions of generic interest are the sedimentation of the insulation debris in a water pool, its possible re-suspension and transport in the sump water flow and the particle load on strainers and corresponding pressure drop. A joint research project on such questions is being performed in cooperation between the University of Applied Sciences Zittau/Görlitz and the Forschungszentrum Dresden-Rossendorf. The project deals with the experimental investigation of particle transport phenomena in coolant flow and the development of CFD models for its description. While the experiments are performed at the University at Zittau/Görlitz, the theoretical modeling efforts are concentrated at Forschungszentrum Dresden-Rossendorf. In the current paper the basic concepts for CFD modeling are described and feasibility studies including the conceptual design of the experiments are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses preliminary work on modeling and validation dynamic adaptation. The proposed approach is on the use of aspect-oriented modeling (AOM) and models at runtime. Our approach covers design and runtime phases. At design-time, a base model and different variant architecture models are designed and the adaptation model is built. Crucially, the adaptation model includes invariant properties and constraints that allow the validation of the adaptation rules before execution. During runtime, the adaptation model is processed to produce a correct system configuration that can be executed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computational Fluid Dynamics (CFD) has found great acceptance among the engineering community as a tool for research and design of processes that are practically difficult or expensive to study experimentally. One of these processes is the biomass gasification in a Circulating Fluidized Bed (CFB). Biomass gasification is the thermo-chemical conversion of biomass at a high temperature and a controlled oxygen amount into fuel gas, also sometime referred to as syngas. Circulating fluidized bed is a type of reactor in which it is possible to maintain a stable and continuous circulation of solids in a gas-solid system. The main objectives of this thesis are four folds: (i) Develop a three-dimensional predictive model of biomass gasification in a CFB riser using advanced Computational Fluid Dynamic (CFD) (ii) Experimentally validate the developed hydrodynamic model using conventional and advanced measuring techniques (iii) Study the complex hydrodynamics, heat transfer and reaction kinetics through modelling and simulation (iv) Study the CFB gasifier performance through parametric analysis and identify the optimum operating condition to maximize the product gas quality. Two different and complimentary experimental techniques were used to validate the hydrodynamic model, namely pressure measurement and particle tracking. The pressure measurement is a very common and widely used technique in fluidized bed studies, while, particle tracking using PEPT, which was originally developed for medical imaging, is a relatively new technique in the engineering field. It is relatively expensive and only available at few research centres around the world. This study started with a simple poly-dispersed single solid phase then moved to binary solid phases. The single solid phase was used for primary validations and eliminating unnecessary options and steps in building the hydrodynamic model. Then the outcomes from the primary validations were applied to the secondary validations of the binary mixture to avoid time consuming computations. Studies on binary solid mixture hydrodynamics is rarely reported in the literature. In this study the binary solid mixture was modelled and validated using experimental data from the both techniques mentioned above. Good agreement was achieved with the both techniques. According to the general gasification steps the developed model has been separated into three main gasification stages; drying, devolatilization and tar cracking, and partial combustion and gasification. The drying was modelled as a mass transfer from the solid phase to the gas phase. The devolatilization and tar cracking model consist of two steps; the devolatilization of the biomass which is used as a single reaction to generate the biomass gases from the volatile materials and tar cracking. The latter is also modelled as one reaction to generate gases with fixed mass fractions. The first reaction was classified as a heterogeneous reaction while the second reaction was classified as homogenous reaction. The partial combustion and gasification model consisted of carbon combustion reactions and carbon and gas phase reactions. The partial combustion considered was for C, CO, H2 and CH4. The carbon gasification reactions used in this study is the Boudouard reaction with CO2, the reaction with H2O and Methanation (Methane forming reaction) reaction to generate methane. The other gas phase reactions considered in this study are the water gas shift reaction, which is modelled as a reversible reaction and the methane steam reforming reaction. The developed gasification model was validated using different experimental data from the literature and for a wide range of operating conditions. Good agreement was observed, thus confirming the capability of the model in predicting biomass gasification in a CFB to a great accuracy. The developed model has been successfully used to carry out sensitivity and parametric analysis. The sensitivity analysis included: study of the effect of inclusion of various combustion reaction; and the effect of radiation in the gasification reaction. The developed model was also used to carry out parametric analysis by changing the following gasifier operating conditions: fuel/air ratio; biomass flow rates; sand (heat carrier) temperatures; sand flow rates; sand and biomass particle sizes; gasifying agent (pure air or pure steam); pyrolysis models used; steam/biomass ratio. Finally, based on these parametric and sensitivity analysis a final model was recommended for the simulation of biomass gasification in a CFB riser.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The simulation of a power system such as the More Electric Aircraft is a complex problem. There are conflicting requirements of the simulation, for example in order to reduce simulation run-times, power ratings that need to be established over long periods of the flight can be calculated using a fairly coarse model, whereas power quality is established over relatively short periods with a detailed model. An important issue is to establish the requirements of the simulation work at an early stage. This paper describes the modelling and simulation strategy adopted for the UK TIMES project, which is looking into the optimisation of the More Electric Aircraft from a system level. Essentially four main requirements of the simulation work have been identified, resulting in four different types of simulation. Each of the simulations is described along with preliminary models and results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performances of L-band EDFA are modeled and analyzed, based on C-band EDFA, through variation of pump power, ion concentration and fiber length. The fiber length promises higher performance than others. © 2005 Optical Society of America.