33 resultados para Modeling Non-Verbal Behaviors Using Machine Learning
em Aston University Research Archive
Resumo:
Specification of the non-functional requirements of applications and determining the required resources for their execution are activities that demand a great deal of technical knowledge, frequently resulting in an inefficient use of resources. Cloud computing is an alternative for provisioning of resources, which can be done using either the provider's own infrastructure or the infrastructure of one or more public clouds, or even a combination of both. It enables more flexibly/elastic use of resources, but does not solve the specification problem. In this paper we present an approach that uses models at runtime to facilitate the specification of non-functional requirements and resources, aiming to facilitate dynamic support for application execution in cloud computing environments with shared resources. © 2013 IEEE.
Resumo:
This study focuses on the interactional functions of non-standard spelling, in particular letter repetition, used in text-based computer-mediated communication as a means of non-verbal signalling. The aim of this paper is to assess the current state of non-verbal cue research in computer-mediated discourse and demonstrate the need for a more comprehensive and methodologically rigorous exploration of written non-verbal signalling. The study proposes a contextual and usage-centered view of written paralanguage. Through illustrative, close linguistic analyses the study proves that previous approaches to non-standard spelling based on their relation to the spoken word might not account for the complexities of this CMC cue, and in order to further our understanding of their interactional functions it is more fruitful to describe the role they play during the contextualisation of the verbal messages. The interactional sociolinguistic approach taken in the analysis demonstrates the range of interactional functions letter repetition can achieve, including contribution to the inscription of socio-emotional information into writing, to the evoking of auditory cues or to a display of informality through using a relaxed writing style.
Resumo:
Objectives Ecstasy is a recreational drug whose active ingredient, 3,4-methylenedioxymethamphetamine (MDMA), acts predominantly on the serotonergic system. Although MDMA is known to be neurotoxic in animals, the long-term effects of recreational Ecstasy use in humans remain controversial but one commonly reported consequence is mild cognitive impairment particularly affecting verbal episodic memory. Although event-related potentials (ERPs) have made significant contributions to our understanding of human memory processes, until now they have not been applied to study the long-term effects of Ecstasy. The aim of this study was to examine the effects of past Ecstasy use on recognition memory for both verbal and non-verbal stimuli using ERPs. Methods We compared the ERPs of 15 Ecstasy/polydrug users with those of 14 cannabis users and 13 non-illicit drug users as controls. Results Despite equivalent memory performance, Ecstasy/polydrug users showed an attenuated late positivity over left parietal scalp sites, a component associated with the specific memory process of recollection. Conlusions This effect was only found in the word recognition task which is consistent with evidence that left hemisphere cognitive functions are disproportionately affected by Ecstasy, probably because the serotonergic system is laterally asymmetrical. Experimentally, decreasing central serotonergic activity through acute tryptophan depletion also selectively impairs recollection, and this too suggests the importance of the serotonergic system. Overall, our results suggest that Ecstasy users, who also use a wide range of other drugs, show a durable abnormality in a specific ERP component thought to be associated with recollection.
Resumo:
This paper reports preliminary progress on a principled approach to modelling nonstationary phenomena using neural networks. We are concerned with both parameter and model order complexity estimation. The basic methodology assumes a Bayesian foundation. However to allow the construction of pragmatic models, successive approximations have to be made to permit computational tractibility. The lowest order corresponds to the (Extended) Kalman filter approach to parameter estimation which has already been applied to neural networks. We illustrate some of the deficiencies of the existing approaches and discuss our preliminary generalisations, by considering the application to nonstationary time series.
Resumo:
This paper assesses the extent to which the equity markets of Hungary, Poland the Czech Republic and Russia have become less segmented. Using a variety of tests it is shown there has been a consistent increase in the co-movement of some Eastern European markets and developed markets. Using the variance decompositions from a vector autoregressive representation of returns it is shown that for Poland and Hungary global factors are having an increasing influence on equity returns, suggestive of increased equity market integration. In this paper we model a system of bivariate equity market correlations as a smooth transition logistic trend model in order to establish how rapidly the countries of Eastern Europe are moving away from market segmentation. We find that Hungary is the country which is becoming integrated the most quickly. © 2005 ELsevier Ltd. All rights reserved.
Resumo:
Today, the data available to tackle many scientific challenges is vast in quantity and diverse in nature. The exploration of heterogeneous information spaces requires suitable mining algorithms as well as effective visual interfaces. Most existing systems concentrate either on mining algorithms or on visualization techniques. Though visual methods developed in information visualization have been helpful, for improved understanding of a complex large high-dimensional dataset, there is a need for an effective projection of such a dataset onto a lower-dimension (2D or 3D) manifold. This paper introduces a flexible visual data mining framework which combines advanced projection algorithms developed in the machine learning domain and visual techniques developed in the information visualization domain. The framework follows Shneiderman’s mantra to provide an effective user interface. The advantage of such an interface is that the user is directly involved in the data mining process. We integrate principled projection methods, such as Generative Topographic Mapping (GTM) and Hierarchical GTM (HGTM), with powerful visual techniques, such as magnification factors, directional curvatures, parallel coordinates, billboarding, and user interaction facilities, to provide an integrated visual data mining framework. Results on a real life high-dimensional dataset from the chemoinformatics domain are also reported and discussed. Projection results of GTM are analytically compared with the projection results from other traditional projection methods, and it is also shown that the HGTM algorithm provides additional value for large datasets. The computational complexity of these algorithms is discussed to demonstrate their suitability for the visual data mining framework.
Resumo:
The thesis is concerned with cross-cultural distance learning in two countries: Great Britain and France. Taking the example of in-house sales training, it argues that it is possible to develop courses for use in two or more countries of differing culture and language. Two courses were developed by the researcher. Both were essentially print-based distance-learning courses designed to help salespeople achieve a better understanding of their customers. One used a quantitative, the other qualitative approach. One considered the concept of the return on investment and the other, for which a video support was also developed, considered the analysis of a customer's needs. Part 1 of the thesis considers differences in the training context between France and Britain followed by a review of the learning process with reference to distance learning. Part 2 looks at the choice of training medium course design and evaluation and sets out the methodology adopted, including problems encountered in this type of fieldwork. Part 3 analyses the data and draws conclusions from the findings, before offering a series of guidelines for those concerned with the development of cross-cultural in-house training courses. The results of the field tests on the two courses were analysed in relation to the socio-cultural, educational and experiential background of the learners as well as their preferred learning styles. The thesis argues that it is possible to develop effective in-house sales training courses to be used in two cultures and identifies key considerations which need to be taken into account when carrying out this type of work.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
For the treatment and monitoring of Parkinson's disease (PD) to be scientific, a key requirement is that measurement of disease stages and severity is quantitative, reliable, and repeatable. The last 50 years in PD research have been dominated by qualitative, subjective ratings obtained by human interpretation of the presentation of disease signs and symptoms at clinical visits. More recently, “wearable,” sensor-based, quantitative, objective, and easy-to-use systems for quantifying PD signs for large numbers of participants over extended durations have been developed. This technology has the potential to significantly improve both clinical diagnosis and management in PD and the conduct of clinical studies. However, the large-scale, high-dimensional character of the data captured by these wearable sensors requires sophisticated signal processing and machine-learning algorithms to transform it into scientifically and clinically meaningful information. Such algorithms that “learn” from data have shown remarkable success in making accurate predictions for complex problems in which human skill has been required to date, but they are challenging to evaluate and apply without a basic understanding of the underlying logic on which they are based. This article contains a nontechnical tutorial review of relevant machine-learning algorithms, also describing their limitations and how these can be overcome. It discusses implications of this technology and a practical road map for realizing the full potential of this technology in PD research and practice. © 2016 International Parkinson and Movement Disorder Society.
Resumo:
This work explores the creation of ambiguous images, i.e., images that may induce multistable perception, by evolutionary means. Ambiguous images are created using a general purpose approach, composed of an expression-based evolutionary engine and a set of object detectors, which are trained in advance using Machine Learning techniques. Images are evolved using Genetic Programming and object detectors are used to classify them. The information gathered during classification is used to assign fitness. In a first stage, the system is used to evolve images that resemble a single object. In a second stage, the discovery of ambiguous images is promoted by combining pairs of object detectors. The analysis of the results highlights the ability of the system to evolve ambiguous images and the differences between computational and human ambiguous images.
Resumo:
In product reviews, it is observed that the distribution of polarity ratings over reviews written by different users or evaluated based on different products are often skewed in the real world. As such, incorporating user and product information would be helpful for the task of sentiment classification of reviews. However, existing approaches ignored the temporal nature of reviews posted by the same user or evaluated on the same product. We argue that the temporal relations of reviews might be potentially useful for learning user and product embedding and thus propose employing a sequence model to embed these temporal relations into user and product representations so as to improve the performance of document-level sentiment analysis. Specifically, we first learn a distributed representation of each review by a one-dimensional convolutional neural network. Then, taking these representations as pretrained vectors, we use a recurrent neural network with gated recurrent units to learn distributed representations of users and products. Finally, we feed the user, product and review representations into a machine learning classifier for sentiment classification. Our approach has been evaluated on three large-scale review datasets from the IMDB and Yelp. Experimental results show that: (1) sequence modeling for the purposes of distributed user and product representation learning can improve the performance of document-level sentiment classification; (2) the proposed approach achieves state-of-The-Art results on these benchmark datasets.
Resumo:
This paper presents some forecasting techniques for energy demand and price prediction, one day ahead. These techniques combine wavelet transform (WT) with fixed and adaptive machine learning/time series models (multi-layer perceptron (MLP), radial basis functions, linear regression, or GARCH). To create an adaptive model, we use an extended Kalman filter or particle filter to update the parameters continuously on the test set. The adaptive GARCH model is a new contribution, broadening the applicability of GARCH methods. We empirically compared two approaches of combining the WT with prediction models: multicomponent forecasts and direct forecasts. These techniques are applied to large sets of real data (both stationary and non-stationary) from the UK energy markets, so as to provide comparative results that are statistically stronger than those previously reported. The results showed that the forecasting accuracy is significantly improved by using the WT and adaptive models. The best models on the electricity demand/gas price forecast are the adaptive MLP/GARCH with the multicomponent forecast; their MSEs are 0.02314 and 0.15384 respectively.
Resumo:
We propose a family of attributed graph kernels based on mutual information measures, i.e., the Jensen-Tsallis (JT) q-differences (for q ∈ [1,2]) between probability distributions over the graphs. To this end, we first assign a probability to each vertex of the graph through a continuous-time quantum walk (CTQW). We then adopt the tree-index approach [1] to strengthen the original vertex labels, and we show how the CTQW can induce a probability distribution over these strengthened labels. We show that our JT kernel (for q = 1) overcomes the shortcoming of discarding non-isomorphic substructures arising in the R-convolution kernels. Moreover, we prove that the proposed JT kernels generalize the Jensen-Shannon graph kernel [2] (for q = 1) and the classical subtree kernel [3] (for q = 2), respectively. Experimental evaluations demonstrate the effectiveness and efficiency of the JT kernels.