3 resultados para Model-Eliciting

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work reported in this paper is part of a project simulating maintenance operations in an automotive engine production facility. The decisions made by the people in charge of these operations form a crucial element of this simulation. Eliciting this knowledge is problematic. One approach is to use the simulation model as part of the knowledge elicitation process. This paper reports on the experience so far with using a simulation model to support knowledge management in this way. Issues are discussed regarding the data available, the use of the model, and the elicitation process itself. © 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since much knowledge is tacit, eliciting knowledge is a common bottleneck during the development of knowledge-based systems. Visual interactive simulation (VIS) has been proposed as a means for eliciting experts’ decision-making by getting them to interact with a visual simulation of the real system in which they work. In order to explore the effectiveness and efficiency of VIS based knowledge elicitation, an experiment has been carried out with decision-makers in a Ford Motor Company engine assembly plant. The model properties under investigation were the level of visual representation (2-dimensional, 2½-dimensional and 3-dimensional) and the model parameter settings (unadjusted and adjusted to represent more uncommon and extreme situations). The conclusion from the experiment is that using a 2-dimensional representation with adjusted parameter settings provides the better simulation-based means for eliciting knowledge, at least for the case modelled.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hierarchical knowledge structures are frequently used within clinical decision support systems as part of the model for generating intelligent advice. The nodes in the hierarchy inevitably have varying influence on the decisionmaking processes, which needs to be reflected by parameters. If the model has been elicited from human experts, it is not feasible to ask them to estimate the parameters because there will be so many in even moderately-sized structures. This paper describes how the parameters could be obtained from data instead, using only a small number of cases. The original method [1] is applied to a particular web-based clinical decision support system called GRiST, which uses its hierarchical knowledge to quantify the risks associated with mental-health problems. The knowledge was elicited from multidisciplinary mental-health practitioners but the tree has several thousand nodes, all requiring an estimation of their relative influence on the assessment process. The method described in the paper shows how they can be obtained from about 200 cases instead. It greatly reduces the experts’ elicitation tasks and has the potential for being generalised to similar knowledge-engineering domains where relative weightings of node siblings are part of the parameter space.