4 resultados para Model translation
em Aston University Research Archive
Resumo:
Eukaryotic translation elongation factor 3 (eEF3) is a fungal-specific ATPase proposed to catalyze the release of deacylated-tRNA from the ribosomal E-site. In addition, it has been shown to interact with the aminoacyl-tRNA binding GTPase elongation factor 1A (eEF1A), perhaps linking the E and A sites. Domain mapping demonstrates that amino acids 775-980 contain the eEF1A binding sites. Domain III of eEF1A, which is also involved in actin-related functions, is the site of eEF3 binding. The binding of eEF3 to eEF1A is enhanced by ADP, indicating the interaction is favored post-ATP hydrolysis but is not dependent on the eEF1A-bound nucleotide. A temperature-sensitive P915L mutant in the eEF1A binding site of eEF3 has reduced ATPase activity and affinity for eEF1A. These results support the model that upon ATP hydrolysis, eEF3 interacts with eEF1A to help catalyze the delivery of aminoacyl-tRNA at the A-site of the ribosome. The dynamics of when eEF3 interacts with eEF1A may be part of the signal for transition of the post to pre-translocational ribosomal state in yeast.
Resumo:
This work explores the relevance of semantic and linguistic description to translation, theory and practice. It is aimed towards a practical model of approach to texts to translate. As literary texts [poetry mainly] are the focus of attention, so are stylistic matters. Note, however, that 'style', and, to some extent, the conclusions of the work, are not limited to so-called literary texts. The study of semantic description reveals that most translation problems do not stem from the cognitive (langue-related), but rather from the contextual (parole-related) aspects of meaning. Thus, any linguistic model that fails to account for the latter is bound to fall short. T.G.G. does, whereas Systemics, concerned with both the 'Iangue' and 'parole' (stylistic and sociolinguistic mainly) aspects of meaning, provides a useful framework of approach to texts to translate. Two essential semantic principles for translation are: that meaning is the property of a language (Firth); and the 'relativity of meaning assignments' (Tymoczko). Both imply that meaning can only be assessed, correctly, in the relevant socio-cultural background. Translation is seen as a restricted creation, and the translator's encroach as a three-dimensional critical one. To encompass the most technical to the most literary text, and account for variations in emphasis in any text, translation theory must be based on typology of function Halliday's ideational, interpersonal and textual, or, Buhler's symbol, signal, symptom, Functions3. Function Coverall and specific] will dictate aims and method, and also provide the critic with criteria to assess translation Faithfulness. Translation can never be reduced to purely objective methods, however. Intuitive procedures intervene, in textual interpretation and analysis, in the choice of equivalents, and in the reception of a translation. Ultimately, translation, theory and practice, may perhaps constitute the touchstone as regards the validity of linguistic and semantic theories.
Resumo:
It has been widely recognised that an in-depth textual analysis of a source text is relevant for translation. This book discusses the role of discourse analysis for translation and translator training. One particular model of discourse analysis is presented in detail, and its application in the context of translator training is critically examined.
Resumo:
The yeast Saccharomyces cerevisiae is an important model organism for the study of cell biology. The similarity between yeast and human genes and the conservation of fundamental pathways means it can be used to investigate characteristics of healthy and diseased cells throughout the lifespan. Yeast is an equally important biotechnological tool that has long been the organism of choice for the production of alcoholic beverages, bread and a large variety of industrial products. For example, yeast is used to manufacture biofuels, lubricants, detergents, industrial enzymes, food additives and pharmaceuticals such as anti-parasitics, anti-cancer compounds, hormones (including insulin), vaccines and nutraceuticals. Its function as a cell factory is possible because of the speed with which it can be grown to high cell yields, the knowledge that it is generally recognized as safe (GRAS) and the ease with which metabolism and cellular pathways, such as translation can be manipulated. In this thesis, these two pathways are explored in the context of their biotechnological application to ageing research: (i) understanding translational processes during the high-yielding production of membrane protein drug targets and (ii) the manipulation of yeast metabolism to study the molecule, L-carnosine, which has been proposed to have anti-ageing properties. In the first of these themes, the yeast strains, spt3?, srb5?, gcn5? and yTHCBMS1, were examined since they have been previously demonstrated to dramatically increase the yields of a target membrane protein (the aquaporin, Fps1) compared to wild-type cells. The mechanisms underlying this discovery were therefore investigated. All high yielding strains were shown to have an altered translational state (mostly characterised by an initiation block) and constitutive phosphorylation of the translational initiation factor, eIF2a. The relevance of the initiation block was further supported by the finding that other strains, with known initiation blocks, are also high yielding for Fps1. A correlation in all strains between increased Fps1 yields and increased production of the transcriptional activator protein, Gcn4, suggested that yields are subject to translational control. Analysis of the 5´ untranslated region (UTR) of FPS1 revealed two upstream open reading frames (uORFs). Mutagenesis data suggest that high yielding strains may circumvent these control elements through either a leaky scanning or a re-initiation mechanism. In the second theme, the dipeptide L-carnosine (ß-alanyl-L-histidine) was investigated: it has previously been shown to inhibit the growth of cancer cells but delay senescence in cultured human fibroblasts and extend the lifespan of male fruit flies. To understand these apparently contradictory properties, the effects of L-carnosine on yeast were studied. S. cerevisiae can respire aerobically when grown on a non-fermentable carbon source as a substrate but has a respiro-fermentative metabolism when grown on a fermentable carbon source; these metabolisms mimic normal cell and cancerous cell metabolisms, respectively. When yeast were grown on fermentable carbon sources, in the presence of L-carnosine, a reduction in cell growth and viability was observed, which was not apparent for cells grown on a non-fermentable carbon source. The metabolism-dependent mechanism was confirmed in the respiratory yeast species Pichia pastoris. Further analysis of S. cerevisiae yeast strains with deletions in their nutrient-sensing pathway, which result in an increase in respiratory metabolism, confirmed the metabolism-dependent effects of L-carnosine.