2 resultados para Model transformations
em Aston University Research Archive
Resumo:
Current models of word production assume that words are stored as linear sequences of phonemes which are structured into syllables only at the moment of production. This is because syllable structure is always recoverable from the sequence of phonemes. In contrast, we present theoretical and empirical evidence that syllable structure is lexically represented. Storing syllable structure would have the advantage of making representations more stable and resistant to damage. On the other hand, re-syllabifications affect only a minimal part of phonological representations and occur only in some languages and depending on speech register. Evidence for these claims comes from analyses of aphasic errors which not only respect phonotactic constraints, but also avoid transformations which move the syllabic structure of the word further away from the original structure, even when equating for segmental complexity. This is true across tasks, types of errors, and, crucially, types of patients. The same syllabic effects are shown by apraxic patients and by phonological patients who have more central difficulties in retrieving phonological representations. If syllable structure was only computed after phoneme retrieval, it would have no way to influence the errors of phonological patients. Our results have implications for psycholinguistic and computational models of language as well as for clinical and educational practices.
Resumo:
Supply chains comprise of complex processes spanning across multiple trading partners. The various operations involved generate large number of events that need to be integrated in order to enable internal and external traceability. Further, provenance of artifacts and agents involved in the supply chain operations is now a key traceability requirement. In this paper we propose a Semantic web/Linked data powered framework for the event based representation and analysis of supply chain activities governed by the EPCIS specification. We specifically show how a new EPCIS event type called "Transformation Event" can be semantically annotated using EEM - The EPCIS Event Model to generate linked data, that can be exploited for internal event based traceability in supply chains involving transformation of products. For integrating provenance with traceability, we propose a mapping from EEM to PROV-O. We exemplify our approach on an abstraction of the production processes that are part of the wine supply chain.