49 resultados para Mode of application of probiotics

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four novel oxapenem compounds were evaluated for their ß-lactamase inhibitory and antibacterial properties. Two (AM-112 and AM-113) displayed intrinsic antibacterial activity with MICs of between 2 to 16µg/ml and 0.5-2µg/ml against Escherichia coli and methicillin-sensitive and -resistant Staphylococcus aureus, respectively. The isomers of these compounds, AM-115 and AM-114 did not display significant antibacterial activity. Combination of the oxapenems with ceftazidime afforded protection against ß-lactamase-producing strains, including hyperproducers of class C enzymes and extended-spectrum ß-lactamase enzymes. A fixed 4µg/ml concentration of AM-112 protected a panel of eight cephalosporins against hydrolysis by class A and class C ß-lactamase producers. In vivo studies confirmed the protective effect of AM-112 for ceftazidime against ß-lactamase producing S. aureus, Enterobacter cloacae and E. coli strains in a murine intraperitoneal infection model. Each of the oxapenems inhibited class A, class C and class D ß-lactamases isolated from whole cells and purified by isoelectric focusing. AM-114 and AM-115 were as effective as clavulanic acid against class A enzymes. AM-112 and AM-113 were less potent against these enzymes. Class C and class D enzymes proved very susceptible to inhibition by the oxapenems. Molecular modelling of the oxapenems in the active site of the class A. TEM-1 and class C P99 enzymes identified a number of potential sites of interaction. The modelling suggested that Ser-130 in TEM-1 and Tyr-150 in P99 were likely candidates for cross-linking of the inhibitor, leading to inhibition of the enzyme. Morphology studies indicated that sub-inhibitory concentrations of the oxapenems caused the formation of round-shaped cells in E. coli DC0, indicating inhibition of penicillin-binding protein 2 (PBP2). The PBP affinity profile of AM-112 was examined in isolated cell membranes of E. coli DC0, S. aureus NCTC 6571, Enterococcus faecalis SFZ and E. faecalis ATCC 29213, in competition with a radiolabelled penicillin. PBP2 was identified as the primary target for AM-112 in E. coli DC0. Studies on S. aureus NCTC 6571 failed to identify a binding target. AM-112 bound to all the PBPs of both E. faecalis strains, and a concentration of 10µg/ml inhibited all the PBPs except PBP3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cachexia is characterised by a progressive weight loss due to depletion of both skeletal muscle and adipose tissue. The loss of adipose tissue is due to the production of a tumour-derived lipid mobilising factor (LMF), which has been shown to directly induce lipolysis in isolated epididymal murine white adipocytes. The administration of LMF to a non-tumour bearing mice produced a rapid weight loss, with a specific reduction in carcass lipid with also some redistribution of lipid with the accumulation of lipid in the liver. There was also up-regulation of uncoupling protein-1 and -2 mRNA and protein expression in brown adipose tissue, suggesting that an adaptive process occurs due to increased energy mobilisation. There was also up-regulation of UCP-2 in the livers of LMF treated mice, suggesting a protective mechanism to the build up of lipid in the livers, which would produce free radical by-products. LMF was also shown to stimulate cyclic AMP production in CHO-K1 cells transfected with human -3 adrenergic receptors and inhibited by the -β3 antagonist SR59230A. LMF binding was also inhibited by SR59230A in isolated receptors. This suggests that LMF mediates its effects through a β3 adrenergic receptor. There were also changes in glucose and fatty acid uptake in LMF treated mice, which suggests metabolic changes are occurring. The study suggests that a tumour derived lipolytic factor acts through the 3 adrenoceptor producing effects on lipid mobilisation, energy expenditure and glucose metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The action of bradykinin on transepithelial transfer of sodium and water in isolated rat jejunum and on smooth muscle contraction of rat terminal ileum has been investigated. (1) Bradykinin was shown to stimulate transfer at low control transfer, inhibit transfer at high control transfer and have no effect at intermediate transfer in rat jejunal sacs. Stimulation of transfer occurred only when bradykinin was in the serosal solutiun while inhibition of transfer occurred whether bradykinin was in the aerosal or mucosal solution. Bradykinin-induced stimulation of transfer was not affected by adrenalectomy, nephrectomy, combined adrenalectomy-nephrectomy,  nor maintenance on 1% saline drinking solution or low sodium diet pretreatment. Meclofenamic acid abolished the bradykinin-induced inhibition of water transfer while prostaglandins A1, E1 aud F2α all potentiated this action. Theophylline inhibited water transfer and potentiated the bradykinin-induced inhibition of water transfer. Cyclic AMP and dibutyryl cyclic AMP both inhibited water transfer and the bradykinin-induced inhibition of water transfer was potentiated by the latter. ( 2 ) Bradykinin-induced contractions of rat terminal ileum were little affected by hyoscine while those of acetylcholine were abolished. Anoxia reduced markedly responses tv bradykinin while those of acetylcholine were little affected . Theophylline reduced the responses of rat terminal ileum to bradykinin significantly more than those to acetylcholine. Aspirin and indomethacin reduced markedly the responses to bradykinin while not affecting those to acetylcholine and PGT2. Meslofenamic acid at a concentration of 3.4 µM blocked bradykinin-induced contractions but had no effect on those to acctylcholine, PGE2 or PGF2 and at a concentration of 17. 0 µM drastically reduced bradykinin responses but also reduced those to acetylcholine, PGE2 and PGF2α• Flufenamic acid drastically reduced responses to bradykinin while not affecting those to acetylcholine and PGE2 and slightly affecting those to PGF2α. Polyphloretin phosphate reduced responses to bradykinin, PGF2α and PGE2 but not acetylcholine . Diphloretin phosphate reduced responses to bradykinin, PGF2 and PGE2 in a dose dependent manner but not those to acetylcholine. SC 19220 , in a dose dependent manner, inhibited responses to bradykinin and PGE2 but not to acetylcholine and PGF2. 7 oxa - 13 -prostynoic acid non specifically reduced responses to acetylcholine, bradykinin and PGE2. Bradykinin, in the presence of SQ 20881 , increased the release of prostaglandin-like activity from rat terminal ileum and this was reduced or abolished in the presence of indomethacin, aspirin, meclofenamic acid or flufenamio acid. The extract of PG-like activity did not appear as PGE, PGA or PGFon TLC, but included a substance with similar mobility as 15-Keto-prosta-glandin E2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The irnidazotetrazinones are a novel group of anti tumour agents which have demonstrated good activity against a range of murine tumours and human xenografts. They possess a structure activity relationship similar to the anti tumour triazenes, with the chloroethyl (mitozolomide) and methyl (temozolomide) analogues being active antitumour agents, whilst the ethyl (CCRG 82019) and higher homologues are inactive. This thesiS attempts to elucidate the biological mechanisms responsible for the strict structure-activity relationship observed amongst the imidazotetrazinones. Mitozolomide is the only agent chemically capable of cross-linking DNA , which has been suggested to be responsible fo r the cytotoxicity of this group of agents. Only mitozolomide and ternozolornide Exhibit a marked ditferential toxicity towards the 0 -alkylguanine-DNA alkyltransferase deficient GM892A (Mer-) cell line rather than the proficient Raji cell line (Mer+). The rate of uptake of imidazotetrazinones into cells is similar for all three agents in both cell lines, and does not explain the differing sensitivities to these agents. The effect of drug treatment on the incorporation of precursors into macromolecules, and their pool sizes, was examined. Temozolomide administration was found to alter de novo protein synthesis in both GM892A and Raji cells. Flow cytometric analysis revealed that temozolomide and CCRG 82019 block cells in late S/G2/M phase of the cell cycle , similar to that observed with mitozolomide. The extent of reaction of all three drugs with isolated macromolecules and cellular macromolecules was determined, and differences found, with cellular repair processes influencing the number of alkyl lesions remaining bound to macromolecules. The specific bases formed in calf thymus DNA after treatment with either temozolornide and CCRG 82019 was measured, and it was found that the types and relative amounts of lesions formed, differed, as well as the total level of alkylation. Whereas DNA extracted from imidazotetrazinone treated cells is not affected in its ability to support RNA polymerase activity, an effect is observed on the ability to extract DNA polymerase from drug treated cells. This may suggest that the alkylated DNA must be in intact chromatin for the lesion to manifest its effects. Temozolomide and methyl methanesulphonate do got appear to act with a synergistic mode of action. The 0 -position of guanine is suspected to be a critical site for the action of these types of drugs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biochemistry of most metabolic pathways is conserved from bacteria to humans, although the control mechanisms are adapted to the needs of each cell type. Oxygen depletion commonly controls the switch from respiration to fermentation. However, Saccharomyces cerevisiae also controls that switch in response to the external glucose level. We have generated an S. cerevisiae strain in which glucose uptake is dependent on a chimeric hexose transporter mediating reduced sugar uptake. This strain shows a fully respiratory metabolism also at high glucose levels as seen for aerobic organisms, and switches to fermentation only when oxygen is lacking. These observations illustrate that manipulating a single step can alter the mode of metabolism. The novel yeast strain is an excellent tool to study the mechanisms underlying glucose-induced signal transduction. © 2004 European Molecular Biology Organization.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we investigate the impact of inter-modal four-wave mixing on mode- and wavelength-division-multiplexing systems. A set of coupled nonlinear Schrödinger equations, including linear mode coupling, is derived allowing to isolate the inter-modal four-wave mixing terms. The efficiency of inter-modal four-wave mixing between degenerate LP modes is found to be significantly higher than the intra-modal four-wave mixing efficiency. However, it is shown that the inter-modal four-wave mixing efficiency between degenerate modes is significantly reduced by the linear mode coupling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report an investigation on the statistics of group delay for few-mode fibres operating in the weak and strong linear coupling regimes as well as in the intermediate coupling regime. A single expression linking the standard deviation of the group delay spread to the fibre linear mode coupling is validated for any coupling regime, considering up to six linearly polarized guided modes. Furthermore, the study of the probability density function of the group delays allowed deriving and validating an analytical estimation for the maximum group delay spread as a function of linear mode coupling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we investigate the impact of linear mode coupling on the efficiency of intermodal four-wave mixing and on the group delay statistics in few-mode fibres. The investigation will include not only the weak or strong linear coupling regimes, but also the transition region between them, the intermediate coupling regime. This analysis will allow to assess the level of coupling strength require to suppress the nonlinear distortion in a few-mode fibre below the level of distortion for single-mode propagation without mode coupling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cilia and flagella are hairlike extensions of eukaryotic cells which generate oscillatory beat patterns that can propel micro-organisms and create fluid flows near cellular surfaces. The evolutionary highly conserved core of cilia and flagella consists of a cylindrical arrangement of nine microtubule doublets, called the axoneme. The axoneme is an actively bending structure whose motility results from the action of dynein motor proteins cross-linking microtubule doublets and generating stresses that induce bending deformations. The periodic beat patterns are the result of a mechanical feedback that leads to self-organized bending waves along the axoneme. Using a theoretical framework to describe planar beating motion, we derive a nonlinear wave equation that describes the fundamental Fourier mode of the axonemal beat. We study the role of nonlinearities and investigate how the amplitude of oscillations increases in the vicinity of an oscillatory instability. We furthermore present numerical solutions of the nonlinear wave equation for different boundary conditions. We find that the nonlinear waves are well approximated by the linearly unstable modes for amplitudes of beat patterns similar to those observed experimentally.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Knowledge elicitation is a well-known bottleneck in the production of knowledge-based systems (KBS). Past research has shown that visual interactive simulation (VIS) could effectively be used to elicit episodic knowledge that is appropriate for machine learning purposes, with a view to building a KBS. Nonetheless, the VIS-based elicitation process still has much room for improvement. Based in the Ford Dagenham Engine Assembly Plant, a research project is being undertaken to investigate the individual/joint effects of visual display level and mode of problem case generation on the elicitation process. This paper looks at the methodology employed and some issues that have been encountered to date. Copyright © 2007 Inderscience Enterprises Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives Effective skin antisepsis and disinfection of medical devices are key factors in preventing many healthcare-acquired infections associated with skin microorganisms, particularly Staphylococcus epidermidis. The aim of this study was to investigate the antimicrobial efficacy of chlorhexidine digluconate (CHG), a widely used antiseptic in clinical practice, alone and in combination with tea tree oil (TTO), eucalyptus oil (EO) and thymol against planktonic and biofilm cultures of S. epidermidis. Methods Antimicrobial susceptibility assays against S. epidermidis in a suspension and in a biofilm mode of growth were performed with broth microdilution and ATP bioluminescence methods, respectively. Synergy of antimicrobial agents was evaluated with the chequerboard method. Results CHG exhibited antimicrobial activity against S. epidermidis in both suspension and biofilm (MIC 2–8 mg/L). Of the essential oils thymol exhibited the greatest antimicrobial efficacy (0.5–4 g/L) against S. epidermidis in suspension and biofilm followed by TTO (2–16 g/L) and EO (4–64 g/L). MICs of CHG and EO were reduced against S. epidermidis biofilm when in combination (MIC of 8 reduced to 0.25–1 mg/L and MIC of 32–64 reduced to 4 g/L for CHG and EO, respectively). Furthermore, the combination of EO with CHG demonstrated synergistic activity against S. epidermidis biofilm with a fractional inhibitory concentration index of <0.5. Conclusions The results from this study suggest that there may be a role for essential oils, in particular EO, for improved skin antisepsis when combined with CHG.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A range of chromia pillared montmorillonite and tin oxide pillared laponite clay catalysts, as well as new pillared clay materials such as cerium and europium oxide pillared montmorillonites were synthesised. Methods included both conventional ion exchange techniques and microwave enhanced methods to improve performance and/or reduce preparation time. These catalytic materials were characterised in detail both before and after use in order to study the effect of the preparation parameters (starting material, preparation method, pillaring species, hydroxyl to metal ratio etc.) and the hydro cracking procedure on their properties. This led to a better understanding of the nature of their structure and catalytic operation. These catalysts were evaluated with regards to their performance in hydrocracking coal derived liquids in a conventional microbomb reactor (carried out at Imperial College). Nearly all catalysts displayed better conversions when reused. The chromia pillared montmorillonite CM3 and the tin oxide pillared laponite SL2a showed the best "conversions". The intercalation of chromium in the form of chromia (Cr203) in the interlayer clearly increased conversion. This was attributed to the redox activity of the chromia pillar. However, this increase was not proportional to the increase in chromium content or basal spacing. In the case of tin oxide pillared laponite, the catalytic activity might have been a result of better access to the acid sites due to the delaminated nature of laponite, whose activity was promoted by the presence of tin oxide. The manipulation of the structural properties of the catalysts via pillaring did not seem to have any effect on the catalysts' activity. This was probably due to the collapse of the pillars under hydrocracking conditions as indicated by the similar basal spacing of the catalysts after use. However, the type of the pillaring species had a significant effect on conversion. Whereas pillaring with chromium and tin oxides increased the conversion exhibited by the parent clays, pillaring with cerium and europium oxides appeared to have a detrimental effect. The relatively good performance of the parent clays was attributed to their acid sites, coupled with their macropores which are able to accommodate the very high molecular mass of coal derived liquids. A microwave reactor operating at moderate conditions was modified for hydro cracking coal derived liquids and tested with the conventional catalyst NiMo on alumina. It was thought that microwave irradiation could enable conversion to occur at milder conditions than those conventionally used, coupled with a more effective use of hydrogen. The latter could lead to lower operating costs making the process cost effective. However, in practice excessive coke deposition took place leading to negative total conversion. This was probably due to a very low hydrogen pressure, unable to have any hydro cracking effect even under microwave irradiation. The decomposition of bio-oil under microwave irradiation was studied, aiming to identify the extent to which the properties of bio-oil change as a function of time, temperature, mode of heating, presence of char and catalyst. This information would be helpful not only for upgrading bio-oil to transport fuels, but also for any potential fuel application. During this study the rate constants of bio-oil's decomposition were calculated assuming first order kinetics.