2 resultados para Mn-doped ZnO
em Aston University Research Archive
Resumo:
N-doped ZnO/g-C3N4 hybrid core–shell nanoplates have been successfully prepared via a facile, cost-effective and eco-friendly ultrasonic dispersion method for the first time. HRTEM studies confirm the formation of the N-doped ZnO/g-C3N4 hybrid core–shell nanoplates with an average diameter of 50 nm and the g-C3N4 shell thickness can be tuned by varying the content of loaded g-C3N4. The direct contact of the N-doped ZnO surface and g-C3N4 shell without any adhesive interlayer introduced a new carbon energy level in the N-doped ZnO band gap and thereby effectively lowered the band gap energy. Consequently, the as-prepared hybrid core–shell nanoplates showed a greatly enhanced visible-light photocatalysis for the degradation of Rhodamine B compare to that of pure N-doped ZnO surface and g-C3N4. Based on the experimental results, a proposed mechanism for the N-doped ZnO/g-C3N4 photocatalyst was discussed. Interestingly, the hybrid core–shell nanoplates possess high photostability. The improved photocatalytic performance is due to a synergistic effect at the interface of the N-doped ZnO and g-C3N4 including large surface-exposure area, energy band structure and enhanced charge-separation properties. Significantly, the enhanced performance also demonstrates the importance of evaluating new core–shell composite photocatalysts with g-C3N4 as shell material.
New negative temperature coefficient thermistor ceramics in Mn-doped CaCu3-xMnxTi4O12 (0≤x≤1) system
Resumo:
New negative temperature coefficient (NTC) ceramics based on CaCu 3-xMnxTi4O12 (0≤x≤1) compositions have been investigated. The grain size of the CaCu 3-xMnxTi4O12 samples decreases at first and then increases with increasing Mn content. The X-ray photoelectron spectroscopy analysis corroborates the presence of Mn3+ and Mn 4+ in Mn-doped samples, which results in a decrease in the activation energy. All the NTC thermistors prepared show a linear relationship between the natural logarithm of the resistivity and the reciprocal temperature, indicative of NTC characteristics. The Mn-doped CaCu3-xMnxTi 4O12 NTC thermistors provide various electrical properties, depending on Mn content. The values of ρ25, B constant and activation energy of the NTC thermistors are in the range of 2.22×106-3.22×108 Ω cm, 5488-8031 K, and 0.473-0.692 eV, respectively. © 2014 Elsevier Ltd and Techna Group S.r.l. All rights reserved.