3 resultados para Minimal models

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Damage to insulation materials located near to a primary circuit coolant leak may compromise the operation of the emergency core cooling system (ECCS). Insulation material in the form of mineral wool fiber agglomerates (MWFA) maybe transported to the containment sump strainers, where they may block or penetrate the strainers. Though the impact of MWFA on the pressure drop across the strainers is minimal, corrosion products formed over time may also accumulate in the fiber cakes on the strainers, which can lead to a significant increase in the strainer pressure drop and result in cavitation in the ECCS. An experimental and theoretical study performed by the Helmholtz-Zentrum Dresden-Rossendorf and the Hochschule Zittau/Görlitz is investigating the phenomena that maybe observed in the containment vessel during a primary circuit coolant leak. The study entails the generation of fiber agglomerates, the determination of their transport properties in single and multi-effect experiments and the long-term effect that corrosion and erosion of the containment internals by the coolant has on the strainer pressure drop. The focus of this paper is on the verification and validation of numerical models that can predict the transport of MWFA. A number of pseudo-continuous dispersed phases of spherical wetted agglomerates represent the MWFA. The size, density, the relative viscosity of the fluid-fiber agglomerate mixture and the turbulent dispersion all affect how the fiber agglomerates are transported. In the cases described here, the size is kept constant while the density is modified. This definition affects both the terminal velocity and volume fraction of the dispersed phases. Note that the relative viscosity is only significant at high concentrations. Three single effect experiments were used to provide validation data on the transport of the fiber agglomerates under conditions of sedimentation in quiescent fluid, sedimentation in a horizontal flow and suspension in a horizontal flow. The experiments were performed in a rectangular column for the quiescent fluid and a racetrack type channel that provided a near uniform horizontal flow. The numerical models of sedimentation in the column and the racetrack channel found that the sedimentation characteristics are consistent with the experiments. For channel suspension, the heavier fibers tend to accumulate at the channel base even at high velocities, while lighter phases are more likely to be transported around the channel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Emerging vehicular comfort applications pose a host of completely new set of requirements such as maintaining end-to-end connectivity, packet routing, and reliable communication for internet access while on the move. One of the biggest challenges is to provide good quality of service (QoS) such as low packet delay while coping with the fast topological changes. In this paper, we propose a clustering algorithm based on minimal path loss ratio (MPLR) which should help in spectrum efficiency and reduce data congestion in the network. The vehicular nodes which experience minimal path loss are selected as the cluster heads. The performance of the MPLR clustering algorithm is calculated by rate of change of cluster heads, average number of clusters and average cluster size. Vehicular traffic models derived from the Traffic Wales data are fed as input to the motorway simulator. A mathematical analysis for the rate of change of cluster head is derived which validates the MPLR algorithm and is compared with the simulated results. The mathematical and simulated results are in good agreement indicating the stability of the algorithm and the accuracy of the simulator. The MPLR system is also compared with V2R system with MPLR system performing better. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Emerging vehicular comfort applications pose a host of completely new set of requirements such as maintaining end-to-end connectivity, packet routing, and reliable communication for internet access while on the move. One of the biggest challenges is to provide good quality of service (QoS) such as low packet delay while coping with the fast topological changes. In this paper, we propose a clustering algorithm based on minimal path loss ratio (MPLR) which should help in spectrum efficiency and reduce data congestion in the network. The vehicular nodes which experience minimal path loss are selected as the cluster heads. The performance of the MPLR clustering algorithm is calculated by rate of change of cluster heads, average number of clusters and average cluster size. Vehicular traffic models derived from the Traffic Wales data are fed as input to the motorway simulator. A mathematical analysis for the rate of change of cluster head is derived which validates the MPLR algorithm and is compared with the simulated results. The mathematical and simulated results are in good agreement indicating the stability of the algorithm and the accuracy of the simulator. The MPLR system is also compared with V2R system with MPLR system performing better. © 2013 IEEE.