21 resultados para Milled powders

em Aston University Research Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mannitol is an essential excipient employed in orally disintegrating tablets due to its high palatability. However its fundamental disadvantage is its fragmentation during direct compression, producing mechanically weak tablets. The primary aim of this study was to assess the fracture behaviour of crystalline mannitol in relation to the energy input during direct compression, utilising ball milling as the method of energy input, whilst assessing tablet characteristics of post-milled powders. Results indicated that crystalline mannitol fractured at the hydrophilic (011) plane, as observed through SEM, alongside a reduction in dispersive surface energy. Disintegration times of post-milled tablets were reduced due to the exposure of the hydrophilic plane, whilst more robust tablets were produced. This was shown through higher tablet hardness and increased plastic deformation profiles of the post-milled powders, as observed with a lower yield pressure through an out-of-die Heckel analysis. Evaluation of crystal state using x-ray diffraction/differential scanning calorimetry showed that mannitol predominantly retained the β-polymorph; however x-ray diffraction provided a novel method to calculate energy input into the powders during ball milling. It can be concluded that particle size reduction is a pragmatic strategy to overcome the current limitation of mannitol fragmentation and provide improvements in tablet properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study investigates the feasibility of using two types of carbomer (971 and 974) to prepare inhalable dry powders that exhibit modified drug release properties. Powders were prepared by spray-drying formulations containing salbutamol sulphate, 20-50% w/w carbomer as a drug release modifier and leucine as an aerosolization enhancer. Following physical characterization of the powders, the aerosolization and dissolution properties of the powders were investigated using a Multi-Stage Liquid Impinger and a modified USP II dissolution apparatus, respectively. All carbomer 974-modified powders and the 20% carbomer 971 powder demonstrated high dispersibility, with emitted doses of at least 80% and fine particle fractions of approximately 40%. The release data indicated that all carbomer-modified powders displayed a sustained release profile, with carbomer 971-modified powders obeying first order kinetics, whereas carbomer 974-modified powders obeyed the Higuchi root time kinetic model; increasing the amount of carbomer 971 in the formulation did not extend the duration of drug release, whereas this was observed for the carbomer 974-modified powders. These powders would be anticipated to deposit predominately in the lower regions of the lung following inhalation and then undergo delayed rather than instantaneous drug release, offering the potential to reduce dosing frequency and improve patient compliance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The controlled co-delivery of multiple agents to the lung offers potential benefits to patients. This study investigated the preparation and characterisation of highly respirable spray-dried powders displaying the sustained release of two chemically distinct therapeutic agents. Spray-dried powders were produced from 30% (v/v) aqueous ethanol formulations that contained hydrophilic (terbutaline sulphate) and hydrophobic (beclometasone dipropionate) model drugs, chitosan (as a drug release modifier) and leucine (aerosolisation enhancer). The influence of chitosan molecular weight on spray-drying thermal efficiency, aerosol performance and drug release profile was investigated. Resultant powders were physically characterised: with in vitro aerosolisation performance and drug release profile investigated by the Multi-Stage Liquid Impinger and modified USP II dissolution apparatus, respectively. It was found that increased chitosan molecular weight gave increased spray-drying thermal efficiency. The powders generated were of a suitable size for inhalation—with emitted doses over 90% and fine particle fractions up to 72% of the loaded dose. Sustained drug release profiles were observed in dissolution tests for both agents: increased chitosan molecular weight associated with increased duration of drug release. The controlled co-delivery of hydrophilic and hydrophobic entities underlines the capability of spray drying to produce respirable particles with sustained release for delivery to the lung. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dry powders for inhalation were prepared by spray drying a 30% v/v aqueous ethanol formulation containing beclometasone dipropionate (BDP), lactose, leucine and chitosan (low, medium or high molecular weight (MW), or combinations thereof). Following physical characterisation of the powders, the aerosolisation and dissolution properties of the powders were investigated using Multi-Stage Liquid Impinger and USP II dissolution apparatus, respectively. The powders were highly dispersible, with emitted doses in excess of 90% of loaded powder aerosolised from a Spinhaler dry powder inhaler. The fine particle fraction (FPF) was observed to decrease, whereas the time for 100% drug release increased, with increasing chitosan MW. For example, the low MW formulation exhibited an FPF of 64% and a 100% dissolution time of 2 h, whereas the high MW formulation demonstrated an FPF of 54% and a dissolution time of 12 h. These powders would be anticipated to deposit predominately in the lower regions of the lung following inhalation, and then undergo delayed rather than instantaneous drug release, offering the potential to reduce dosing frequency and improve patient compliance. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we describe the preparation of highly dispersible dry powders for pulmonary drug delivery that display sustained drug release characteristics. Powders were prepared by spray-drying 30% v/v aqueous ethanol formulations containing terbutaline sulfate as a model drug, chitosan as a drug release modifier and leucine as an aerosolisation enhancer. The influence of chitosan molecular weight on the drug release profile was investigated by using low, medium and high molecular weight chitosan or combinations thereof. Following spray-drying, resultant powders were characterised using scanning electron microscopy, laser diffraction, tapped density analysis, differential scanning calorimetry and thermogravitational analysis. The in vitro aerosolisation performance and drug release profile were investigated using Multi-Stage Liquid Impinger analysis and modified USP II dissolution apparatus, respectively. The powders generated were of a suitable aerodynamic size for inhalation, had low moisture content and were amorphous in nature. The powders were highly dispersible, with emitted doses of over 90% and fine particle fractions of up to 82% of the total loaded dose, and mass median aerodynamic diameters of less than 2.5microm. A sustained drug release profile was observed during dissolution testing; increasing the molecular weight of the chitosan in the formulation increased the duration of drug release. (c)2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Powders for inhalation are traditionally prepared using a destructive micronization process such as jet milling to reduce the particle size of the drug to 2-5 μm. The resultant particles are typically highly cohesive and display poor aerosolization properties, necessitating the addition of a coarse carrier particle to the micronized drug to improve powder flowability. Spray-drying technology offers an alternative, constructive particle production technique to the traditional destructive approach, which may be particularly useful when processing biotechnology products that could be adversely affected by high-energy micronization processes. Advantages of spray drying include the ability to incorporate a wide range of excipients into the spray-drying feedstock, which could modify the aerosolization and stability characterizations of the resultant powders, as well as modify the drug release and absorption profiles following inhalation. This review discusses some of the reasons why pulmonary drug delivery is becoming an increasingly popular route of administration and describes the various investigations that have been undertaken in the preparation of spray-dried powders for pulmonary drug delivery. © 2007 by Begell House, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the amino acids arginine, aspartic acid, leucine, phenylalanine and threonine were investigated as 'dispersibility enhancers' in spray-dried powders for inhalation. Parameters such as spray-dried yield, tapped density, and Carr's Index were not predictive of aerosolisation performance. In addition, whilst the majority of amino acid-modified powders displayed suitable particle size distribution for pulmonary administration and potentially favourable low moisture content, in vitro particle deposition was only enhanced for the leucine-modified powder. In summary, leucine can be used to enhance the dispersibility and aerosolisation properties of spray-dried powders for pulmonary drug delivery. © 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dry powders suitable for inhalation containing β-estradiol, leucine as a dispersibility enhancer and lactose as a bulking agent were prepared by spray-drying from aqueous ethanol formulations. The influence of formulation components on the characteristics of the resultant spray-dried powders was examined through the use of a range of ethanol concentrations (10-50% v/v) in the solvent used to prepare the initial formulations. Additionally, the amount of leucine required to act as a dispersibility enhancer was investigated by varying the amount of leucine added to the formulation prior to spray-drying. Following spray-drying, resultant powders were characterised using scanning electron microscopy, laser diffraction and tapped density measurements, and the aerosolisation performance determined using Twin Stage Impinger and Andersen Cascade Impactor analysis. We demonstrate that selection of appropriate solvent systems and leucine concentration allows the preparation of spray-dried powders that display enhanced aerosolisation properties, and would be predicted to exhibit high deposition in the lower regions of the respiratory tract. © 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Pulmonary delivery of gene therapy offers the potential for the treatment of a range of lung conditions, including cystic fibrosis, asthma and lung cancer. Spray-drying may be used to prepare dry powders for inhalation; however, aerosolisation of such powders is limited, resulting in poor lung deposition and biological functionality. In this study, we examine the use of amino acids (arginine, aspartic acid, threonine, phenylalanine) to enhance the aerosolisation of spray-dried powders containing model non-viral gene vectors. Methods Lipid/polycation/pDNA (LPD) vectors, in the presence or absence of amino acids, were dispersed in lactose solutions, and spray-dried to produce appropriately sized dry powders. Scanning electron microscopy and laser diffraction were used to determine particle morphology and diameter, respectively. Gel electrophoresis was used to examine the influence of amino acids on the structural integrity of the LPD complex. In vitro cell (A.549) transfection was used to determine the biological functionality of the dry powders, and the in vitro aerosolisation performance was assessed using a multistage liquid impinger (MSLI). Results Both gel electrophoresis and in vitro cell transfection indicated that certain amino acids (aspartic acid, threonine) can adversely affect the integrity and biological functionality of the LPD complex. All amino acids significantly increased the aerosolisation of the powder, with the arginine and phenylalanine powders showing optimal deposition in the lower stages of the MSLI. Conclusions Amino acids can be used to enhance the aerosolisation of spray-dried powders for respiratory gene delivery, allowing the development of stable and viable formulations for pulmonary gene therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The decomposition of drugs in the solid state has been studied using aspirin and salsalate as models. The feasibility of using suspension systems for predicting the stability of these drugs in the solid state has been investigated.. It has been found that such systems are inappropriate in defining the effect of excipients on 'the decomposition of the active drug due to chqnges in the degradation pathway. Using a high performance liquid chromatographic method, magnesium stearate was shown to induce the formation of potentlally immunogenic products in aspirin powders. These products which included salicylsalicylic acid .and acetylsalicyclsalicylic acid were not detected in aspirin suspensions which had undergone the same extent of decomposition. By studying the effect of pH and of added excipients on the rate of decomposition of aspirin in suspension systems, it has been shown that excipients such as magnesium stearate containing magnesium oxide, most probably enhance the decomposition of both aspirin and salsalate by alkalinising the aqueous phase. In the solid state, pH effects produced by excipients appear to be relatively unimportant. Evidence is presented to suggest that the critical parameter is a depression in melting point induced by: the added excipient. Microscopical examination in fact showed the formation of clear liquid layers in aspirin samples containing added magnesium stearate but not in control samples. Kinetic equations which take into account both the diffusive barrier presented by the liquid films and the. geometry of the aspirin crystals were developed. Fitting of the .experimental data to these equations showed good agreement. with the postulated theory. Monitorjng of weight issues during the decomposition of aspirin revealed that in the solid systems studied where the bulk of the decomposition product sublimes, it is possible to estimate the extent of degradation from the residual weight, provided the initial weight is known. The corollary is that in such open systems, monitoring of decomposition products is inadequate for assessing the extent of decomposition. In addition to the magnesium stearate-aspirin system, mapyramine maleate-aspirin mixtures were used to model interactive systems. Work carried out in an attempt to stabilise such systems included microencapsulation and film coating. The protection obtained was dependent on the interactive species used. Gelatin for example appeared to stabilise aspirin against the adverse effects of magnesium stearate but increased its decomposition in the presence of mapyramine maleate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hygroscopic growth of aerosols is an important factor effecting particle size. The consequence of the hygroscopic growth of pharrnaceutical aerosols is a change in their deposition characteristics, such that there is an increase in the total amount deposited in the lung. In this study the hygroscopic growth of disodium fluorescein (DF) aerosol powders was investigated by coating the powders with lauric and capric acids. The coating procedure was carried out in dichloromethane and chloroform, which acted as cosolvents for the fatty acids. An assessment of the extent and the nature of the coating was carried out. The qualitative assessment of the coating was achieved by infra-red spectroscopy, electronscanning chemical analysis and scanning electron microscopy. The quantitative analysis was carried out by differential refractometry, ultra-violet spectroscopy and gas liquid chromatography. These powders were generated under conditions approaching those in the lung, of 97 % relative humidity and 37"C. Coated and uncoated DF aerosol powders were introduced into a controlled temperature and relative humidity apparatus, designed and constructed for the investigation of hygroscopic growth in these studies. A vertical spinning disc device was used to generate the powders. Under conditions of controlled temperature and relative humidity mentioned, the growth ratio of disodium fluorescein alone was 1.45 compared with 1.68, for a nominal coating of DF with lauric acid of 0.12 gg-1, 1.0 for a nominal lauric acid coating of 0.2 gg-1, and 1.02 for a nominal capric acid coating of 0.18 gg-1. The range of control of hygroscopic growth of these aerosols has implications for the deposition of these preparations in the respiratory tract. These implications are discussed in the light of the current knowledge of the effects of hygroscopic growth on the deposition of pharmaceutical and environmental aerosols. A series of experiments in which pulmonary ventilation using a simple radioaerosol generator and delivery system are reported showing that particle size determination may be used to aid the design of diagnostic aerosol generators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atomic force microscopy has been used to study the surface properties of model spray dried powders. Phase imaging, nanoindentation and force modulation microscopy have differentiated between the different surface material properties of the particles, revealing a regular dispersion of soft, oil rich areas distributed across the particles' surface. Humidity and temperature cycling effects on the caking behavior of the particles have also been investigated, with significant morphology changes and onset of caking found to occur within relatively short periods of time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spray drying is widely used to manufacture many powdered products, with the drying process parameters having significant influence over the final powder's surface properties and propensity for unwanted caking. In most cases caking experiments are performed on bulk powders, but especially in multi-component powders, it is often difficult to interpret these results, where interaction effects between particles can be complex. Here the technique of scanning probe microscopy is used to characterize the nanoscale properties of spray dried model milk powders in order to investigate the surface properties of the powders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The surface composition of food powders created from spray drying solutions containing various ratios of sodium caseinate, maltodextrin and soya oil have been analysed by Electron Spectroscopy for Chemical Analysis. The results show significant enrichment of oil at the surface of particles compared to the bulk phase, and (when the non-oil components only are considered), a significant surface enrichment of sodium caseinate also. The study found evidence of high levels (80%) of surface fat even on particles of food industry grade (92.5%) sodium caseinate containing only 1% fat.