36 resultados para Mildly Oxidized Ldl
em Aston University Research Archive
Resumo:
Elevated total cholesterol in midlife has been associated with increased risk of dementia in later life. We have previously shown that low-density lipoprotein (LDL) is more oxidized in the plasma of dementia patients, although total cholesterol levels are not different from those of age-matched controls. β-Amyloid (Aβ) peptide, which accumulates in Alzheimer disease (AD), arises from the initial cleavage of amyloid precursor protein by β-secretase-1 (BACE1). BACE1 activity is regulated by membrane lipids and raft formation. Given the evidence for altered lipid metabolism in AD, we have investigated a mechanism for enhanced Aβ production by SH-SY5Y neuronal-like cells exposed to oxidized LDL (oxLDL). The viability of SH-SY5Y cells exposed to 4 μg oxLDL and 25 μM 27-hydroxycholesterol (27OH-C) was decreased significantly. Lipids, but not proteins, extracted from oxLDL were more cytotoxic than oxLDL. In parallel, the ratio of reduced glutathione (GSH) to oxidized glutathione was decreased at sublethal concentrations of lipids extracted from native and oxLDL. GSH loss was associated with an increase in acid sphingomyelinase (ASMase) activity and lipid raft formation, which could be inhibited by the ASMase inhibitor desipramine. 27OH-C and total lipids from LDL and oxLDL independently increased Aβ production by SH-SY5Y cells, and Aβ accumulation could be inhibited by desipramine and by N-acetylcysteine. These data suggest a mechanism whereby oxLDL lipids and 27OH-C can drive Aβ production by GSH depletion, ASMase-driven membrane remodeling, and BACE1 activation in neuronal cells. © 2014 The Authors.
Angiopoietin-2 confers Atheroprotection in apoE-/- mice by inhibiting LDL oxidation via nitric oxide
Resumo:
Atherosclerosis is promoted by a combination of hypercholesterolemia and vascular inflammation. The function of Angiopoietin (Ang)-2, a key regulator of angiogenesis, in the maintenance of large vessels is unknown. A single systemic administration of Ang-2 adenovirus (AdAng-2) to apoE-/- mice fed a Western diet significantly reduced atherosclerotic lesion size 8 40%) and oxidized LDL and macrophage content of the plaques. These beneficial effects were abolished by the inhibition of nitric oxide synthase (NOS). In endothelial cells, endothelial NOS activation per se inhibited LDL oxidation and Ang-2 stimulated NO release in a Tie2-dependent manner to decrease LDL oxidation. These findings demonstrate a novel atheroprotective role for Ang-2 when endothelial cell function is compromised and suggest that growth factors, which stimulate NO release without inducing inflammation, could offer atheroprotection.
Resumo:
Atherosclerosis is the principal cause of death in the United States, Europe and much of Asia. During the last decade, inflammation has been suggested to play a key role in the development of atherosclerosis. Reactive oxygen species (ROS) released during inflammation additionally oxidize LDL, which is subsequently taken up in an unregulated way through scavenger receptors on macrophages to form foam cells, the hallmark of atherosclerotic lesions. Previous work has shown that the lipid ceramide, which is found in aggregated LDL and in atherosclerotic plaques, decreases intracellular peroxide most likely through reducing NADPH oxidase activity. Ceramide is an important component of membrane microdomains called lipid rafts which are important for membrane protein function. Endogenous ceramide enhances lipid raft f'ormation and alters theirs composition. NADPH oxidase membrane subunits cytochrome b558 (which includes gp91) strongly associates with lipid rafts Therefore present study investigated whether short chain ceramides reduce NADPH oxidase in U937 monocytes by disrurting the membrane component of NADPH oxidase. Results showed that C2 ceramide alters the distribution of raft marker, flottillin and the raft environment. NADPH oxidase membrane component gp9J phox and cytosolic component p47 phox were identified in rafts. C2 ceramide reduces both gp91 and p47 phox in rafts, which leads to the decrease of peroxide production by NADPH oxidase. Ceramide is also an important second messenger involved in many different signaling pathways associated with atherogenesis from the activation of sphingomyelinase (SMase). It has been reported that SMase enhances LDL receptor mediated LDL endocytosis. However, no study has been done to investigate the effect of ceramide on scavenger receptors such as CD36 and oxidized LDL (OxLDL) uptake. CD36 is the major recertor far OxLDL. Reduced CD36 expression results in less foam cell formation and less atherosclerotic lesion without disrupting the clearance of OxLDL from plasma. This thesis shows that ceramides significantly reduce CD36 surface expression on U937 monocytes, macrophages and human primary monocytes. This effect is seen using both synthetic short chain ceramide and SMase catalysed long chain ceramide treatment. To investigate whether the effect of ceramide on CD36 is functional, OxLOL uptake was measured in ceramide treated cells. Ceramide reduces the uptake of OxLOL by both U937 monocytes and PMA-differentiated macrophages. The mechanism of ceramide reduction of CD36 expression was studied by measuring the surface antigen using flow cytometry and fluorescence microscopy, whole cellular CD36 expression and shedding of C036 by Western blotting of cell lysates and cell culture supernatants and mRNA level of CD36 using RT-PCR. Ceramide reduces shedding of CD36, activates mRNA expression of CD36 and induces intracellular CD36 accumulation probably through retaining the receptor inside cells. In summary, ceramides modulate several of the processes involved in LOL oxidation and uptake by CD36 receptors on monocytes/macrophages in a way which may protect against atherosclerosis.
Resumo:
Elevated plasma free fatty acids (FAs) are associated with increased risk of cardiovascular disease. This study investigates the effects of the saturated FA palmitate and unsaturated FA oleate on monocyte phenotype and function. Incubation of human U937 and THP-1 monocytes with palmitate for 24h increased cell surface expression of integrin CD11b and scavenger receptor CD36 in a concentration-dependent manner with some decrease in mitochondrial reducing capacity at high concentration (300µM). Monocytes incubated with palmitate, but not oleate, showed increased uptake of oxidized LDL and increased adhesion to rat aortic endothelium, particularly at bifurcations. The palmitate-induced increase in CD11b and CD36 expression was associated with increased cellular C16 ceramide and sphingomyelin, loss of reduced glutathione, and increased reactive oxygen species (ROS). Increased monocyte surface CD11b and CD36 was inhibited by fumonisin B1, an inhibitor of de novo ceramide synthesis, but not by the superoxide dismutase mimetic MnTBap. In contrast, MnTBap prevented the mitochondrial ROS increase and metabolic inhibition due to 300µM palmitate. This study demonstrates that in viable monocytes, palmitate but not oleate increases expression of surface CD11b and CD36. Palmitate increases monocyte adhesion to the aortic wall and promotes uptake of oxidized LDL and this involves de novo ceramide synthesis.
Resumo:
Blood cholesterol levels are not consistently elevated in subjectswith age-related cognitive decline, although epidemiological studies suggest that Alzheimer's disease and cardiovascular diseases share common risk factors. These include the presence of an unusual genetic variant, the APOE4 (apolipoprotein E4) allele, which modulates LDL (low-density lipoproteins) metabolism, increases free radical formation and reduces plasma antioxidant concentrations. Together, these risk factors support a mechanism for increased LDL circulation time and free radical modification of LDL. Plasma oxycholesterols, hydroxylated metabolites of cholesterol, are carried by oxidized LDL, and elevated lipids in mid-life are associated with increased longterm risk of dementia. Although brain cholesterol metabolism is segregated from the systemic circulation, during oxidative stress, plasma oxycholesterols could have damaging effects on BBB (blood-brain barrier) function and consequently on neuronal cells. Cholesterol-lowering drugs such as statins may prevent the modifications to LDL in mid-life and might show beneficial effects in later life. © The Authors Journal compilation © 2014 Biochemical Society.
Resumo:
Elevated plasma free fatty acids (FAs) are associated with increased risk of cardiovascular disease. We investigated the effects of the saturated FA palmitate and unsaturated FA oleate on monocyte phenotype and function. Palmitate increased cell surface expression of integrin CD11b and scavenger receptor CD36 in a concentration-dependent manner with some decrease in mitochondrial reducing capacity at high concentration (300µM). Monocytes incubated with palmitate, but not oleate, showed increased uptake of oxidized LDL and increased adhesion to rat aortic endothelium, particularly at bifurcations. The palmitate-induced increase in CD11b and CD36 expression was associated with increased cellular C16 ceramide and sphingomyelin, loss of reduced glutathione, and increased reactive oxygen species (ROS). Increased monocyte surface CD11b and CD36 was inhibited by fumonisin B1, an inhibitor of de novo ceramide synthesis, but not by the superoxide dismutase mimetic MnTBap. In contrast, MnTBap prevented the mitochondrial ROS increase and metabolic inhibition due to 300µM palmitate. This study demonstrates that in viable monocytes, palmitate but not oleate increases expression of surface CD11b and CD36. Palmitate increases monocyte adhesion to the aortic wall and promotes uptake of oxidized LDL and this involves de novo ceramide synthesis. We have also explored whether specific dietary fatty acids drive monocyte to macrophage polarisation via metabolic pathways. Here we show that monocytes pre-incubated with the saturated fatty acid palmitate increase production of inflammatory cytokines such as TNFa and IL-6 in response to a phorbol myristate differentiation trigger. This increases mitochondrial superoxide production, reduces dependency on oxidative phosphorylation through ceramide-dependent inhibition of PPARgamma activity and increases TNFa production, again via a mechanism that requires ceramide production.
Resumo:
Oxidised LDL accumulates in macrophages following scavenger receptor (SR) uptake. The expression of the SR, CD36, is increased by oxidised LDL. The signalling molecule, ceramide, can modulate intracellular peroxides and increase lipid peroxidation. Ceramide also accumulates in atherosclerotic plaques. Thus, we have examined whether ceramide can modulate CD36 expression and function in human monocyte/macrophages. Addition of synthetic short chain ceramides or the action of sphingomyelinase to generate physiological long chain ceramides in situ caused significant reductions in CD36 expression by monocytes/macrophages which was not due to inhibition of mRNA expression. Inhibition of proteasomal degradation using lactacystin had no effect on CD36 expression, however, flow cytometric analysis of permeabilised cells suggested an intracellular trafficking blockade. Ceramide treated monocytes/macrophages showed dose dependent reduction in oxidised LDL uptake. Taken together, it is suggested that ceramide blocks the transport of CD36 to the membrane of monocytes/macrophages, thereby preventing uptake of oxidised LDL. © 2006 Elsevier Inc. All rights reserved.
Resumo:
We recently reported that methionine-loaded human umbilical vein endothelial cells (HUVECs) exported homocysteine (Hcy) and were associated with hydroxyl radical generation and oxidation of lipids in LDL. Herein we have analysed the Hcy-induced posttranslational modifications (PTMs) of LDL protein. PTMs have been characterised using electrophoretic mobility shift, protein carbonyl ELISA, HPLC with electrochemical detection and Western blotting of 3-nitrotyrosine, and LDL uptake by scavenger receptors on monocyte/macrophages. We have also analysed PTMs in LDL isolated from rheumatoid (RA) and osteo-(OA) arthritis patients with cardiovascular disease (CVD). While reagent Hcy (<50 μM) promoted copper-catalysed LDL protein oxidation, Hcy released from methionine-loaded HUVECs promoted LDL protein nitration. In addition, LDL nitration was associated with enhanced monocyte/macrophage uptake when compared with LDL oxidation. LDL protein nitration and uptake by monocytes, but not carbonyl formation, was elevated in both RA and OA patients with CVD compared with disease-matched patients that had no evidence of CVD. Moreover, a direct correlation between plasma total Hcy (tHcy) and LDL uptake was observed. The present studies suggest that elevated plasma tHcy may promote LDL nitration and increased scavenger receptor uptake, providing a molecular mechanism that may contribute to the clinical link between CVD and elevated plasma tHcy. © 2005 Elsevier Inc. All rights reserved.
Resumo:
A model system is presented using human umbilical vein endothelial cells (HUVECs) to investigate the role of homocysteine (Hcy) in atherosclerosis. HUVECs are shown to export Hcy at a rate determined by the flux through the methionine/Hcy pathway. Additional methionine increases intracellular methionine, decreases intracellular folate, and increases Hcy export, whereas additional folate inhibits export. An inverse relationship exists between intracellular folate and Hcy export. Hcy export may be regulated by intracellular S-adenosyl methionine rather than by Hcy. Human LDLs exposed to HUVECs exporting Hcy undergo time-related lipid oxidation, a process inhibited by the thiol trap dithionitrobenzoate. This is likely to be related to the generation of hydroxyl radicals, which we show are associated with Hcy export. Although Hcy is the major oxidant, cysteine also contributes, as shown by the effect of glutamate. Finally, the LDL oxidized in this system showed a time-dependent increase in uptake by human macrophages, implying an upregulation of the scavenger receptor. These results suggest that continuous export of Hcy from endothelial cells contributes to the generation of extracellular hydroxyl radicals, with associated oxidative modification of LDL and incorporation into macrophages, a key step in atherosclerosis. Factors that regulate intracellular Hcy metabolism modulate these effects. Copyright © 2005 by the American Society for Biochemistry and Molecular Biology, Inc.
Resumo:
During inflammation, many cell types release reactive oxygen species (ROS) via the respiratory burst. These ROS are potent oxidants of LDL and its major protein, apolipoprotein B. Whilst native LDL is taken up by endothelial cells via a feedback controlled receptor-regulated process, oxidative modification of LDL renders it a ligand for many scavenger receptors. Scavenger receptors include CD-36, LOX-1 and the prototypic macrophage SR A I/II, all of which are variably expressed. Uncontrolled uptake of oxidised LDL is implicated in the pathogenesis of atherosclerosis. In addition, oxidised LDL increases CCR2 protein and mRNA expression on monocytes, and thus may contribute to monocyte retention and perpetuation in inflammatory, unstable atherosclerotic lesions. However, little data are available on the effects of specific minor modifications to apolipoprotein B. In order to identify the sequence specificity and nature of oxidative modifications which confer altered properties on LDL, we have investigated the effects of modified peptides (which correspond to the putative LDLR binding domain) on LDL uptake by HUVECs and U937 monocytes.
Resumo:
The involvement of oxidatively modified low density lipoprotein (LDL) in the development of CHD is widely described. We have produced two antibodies, recognizing the lipid oxidation product malondialdehyde (MDA) on whole LDL or ApoB-100. The antibodies were utilized in the development of an ELISA for quantitation of MDA-LDL in human plasma. Intra- and inter-assay coefficients of variation (% CV) were measured as 4.8 and 7.7%, respectively, and sensitivity of the assay as 0.04 μg/ml MDA-LDL. Recovery of standard MDA-LDL from native LDL was 102%, indicating the ELISA to be specific with no interference from other biomolecules. Further validation of the ELISA was carried out against two established methods for measurement of lipid peroxidation products, MDA by HPLC and F2-isoprostanes by GC-MS. Results indicated that MDA-LDL is formed at a later stage of oxidation than either MDA or F2- isoprostanes. In vivo analysis demonstrated that the ELISA was able to determine steady-state concentrations of plasma MDA-LDL (an end marker of lipid peroxidation). A reference range of 34.3 ± 8.8 μg/ml MDA-LDL was established for healthy individuals. Further, the ELISA was used to show significantly increased plasma MDA-LDL levels in subjects with confirmed ischemic heart disease, and could therefore possibly be of benefit as a diagnostic tool for assessing CHD risk. © 2003 Elsevier Inc.
Resumo:
Phospholipids are complex and varied biomolecules that are susceptible to lipid peroxidation after attack by free radicals or electrophilic oxidants and can yield a large number of different oxidation products. There are many available methods for detecting phospholipid oxidation products, but also various limitations and problems. Electrospray ionization mass spectrometry allows the simultaneous but specific analysis of multiple species with good sensitivity and has a further advantage that it can be coupled to liquid chromatography for separation of oxidation products. Here, we explain the principles of oxidized phospholipid analysis by electrospray mass spectrometry and describe fragmentation routines for surveying the structural properties of the analytes, in particular precursor ion and neutral loss scanning. These allow targeted detection of phospholipid headgroups and identification of phospholipids containing hydroperoxides and chlorine, as well as the detection of some individual oxidation products by their specific fragmentation patterns. We describe instrument protocols for carrying out these survey routines on a QTrap5500 mass spectrometer and also for interfacing with reverse-phase liquid chromatography. The article highlights critical aspects of the analysis as well as some limitations of the methodology.
Resumo:
It is not known whether the association between increased plasma homocysteine (Hcy) associated with LDL modification and propensity for LDL uptake by macrophages in cardiovascular disease patients holds true in vascular dementia (VaD). Plasma from 83 subjects diagnosed with Alzheimer's disease (AD), VaD, mild cognitive impairment (MCI) and from controls was analysed to examine (1) whether LDL isolated from the plasma of VaD is biochemically and functionally distinct from that isolated from AD, MCI or controls; and (2) whether such biomarkers of LDL phenotype are related to plasma folate levels, Hcy levels and/or to disease severity. Folate and vitamin B6 levels were significantly lower in VaD subjects than in controls. VaD-LDL showed increased protein carbonyl content (p <0.05) and was more susceptible to scavenging by macrophages (p <0.05) than AD- or control-LDL. Patients from the VaD cohort were more prevalent in the lowest tertile for HDL:LDL and the upper tertile for LDL oxidation; the combined parameters of HDL cholesterol, LDL oxidation and scavenging by macrophages show 87% sensitivity towards VaD detection. The association between folate deficiency, LDL modification and dysfunction in VaD but not in AD may provide a novel biomarker assessment to discriminate between the diseases.
Resumo:
Purpose. To assess the relationship between macular pigment optical density (MPOD) and blood markers for antioxidant defense in otherwise healthy volunteers. Methods. Forty-seven healthy volunteers were subjected to blood analysis to detect the level of circulating glutathione in its reduced (GSH) and oxidized (GSSG) forms. The level of MPOD was measured using heterochromatic flicker photometry. Systemic blood pressure (BP) parameters, heart rate (HR), body mass index (BMI), and plasma levels of total, HDL, and LDL cholesterol and triglycerides (TGs) were also determined. Results. A simple correlation model revealed that the level of MPOD correlated significantly and positively with both GSH (P < 0.001) and t-GSH (P < 0.001) levels but not with those of GSSG (P > 0.05). Age, sex, systemic BP parameters, HR, BMI, and plasma levels of cholesterol and TGs did not have any influence on either MPOD or glutathione levels (all P > 0.05). In addition, a forward stepwise multiple regression analysis showed MPOD to have a significantly and independent correlation with GSH levels (ß = 0.63; P < 0.001). Conclusions. In otherwise healthy older individuals, there is a positive correlation between local and systemic antioxidant defense mechanisms.
Resumo:
Oxidized phospholipids, such as the products of the oxidation of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine by nonenzymatic radical attack, are known to be formed in a number of inflammatory diseases. Interest in the bioactivity and signaling functions of these compounds has increased enormously, with many studies using cultured immortalized and primary cells, tissues, and animals to understand their roles in disease pathology. Initially, oxidized phospholipids were viewed largely as culprits, in line with observations that they have proinflammatory effects, enhancing inflammatory cytokine production, cell adhesion and migration, proliferation, apoptosis, and necrosis, especially in vascular endothelial cells, macrophages, and smooth muscle cells. However, evidence has emerged that these compounds also have protective effects in some situations and cell types; a notable example is their ability to interfere with signaling by certain Toll-like receptors (TLRs) induced by microbial products that normally leads to inflammation. They also have protective effects via the stimulation of small GTPases and induce up-regulation of antioxidant enzymes and cytoskeletal rearrangements that improve endothelial barrier function. Oxidized phospholipids interact with several cellular receptors, including scavenger receptors, platelet-activating factor receptors, peroxisome proliferator-activated receptors, and TLRs. The various and sometimes contradictory effects that have been observed for oxidized phospholipids depend on their concentration, their specific structure, and the cell type investigated. Nevertheless, the underlying molecular mechanisms by which oxidized phospholipids exert their effects in various pathologies are similar. Although our understanding of the actions and mechanisms of these mediators has advanced substantially, many questions do remain about their precise interactions with components of cell signaling pathways.