9 resultados para Microparticle

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental and theoretical study of the impact behaviour of charged microparticles in a high voltage vacuum gap has been carried out to investigate under controlled conditions the role of low velocity microparticles (ζ 500 ms-1) in initiating electrical breakdown in such gaps. This has involved developing a unique (UHV) low-velocity source of micron-sized charged particles to study the underlying mechanical and electrical aspects of micro-particle impact on a range of target materials e.g. Pb, Ti, C, stainless-steel and mica etc., having atomically clean or oxidised surfaces. Argon-ion etching and electron-beam heating has been used for in-situ surface treatment and ellipsometry for characterising the target surfaces. An associated sphere/plane theoretical model has been developed for detailed analysis of the many complex electrical (in-flight in-field emission, M.I.M. tunnelling and ohmic conduction) and mechanical (impact dynamics, deformation and heating) phenomena that are involved when a microparticle closely approaches and impacts on a plane target. In each instance the influence of parameters such as particle radius, particle/target impact velocity, surface field, surface condition and material has been determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated optimizing the formulation parameters for encapsulation of a model mucinolytic enzyme, a-chymotrypsin (a-CH), within a novel polymer; poly(ethylene glycol)-co-poly(glycerol adipate-co-?-pentadecalactone), PEG-co-(PGA-co-PDL) which were then applied to the formulation of DNase I. a-CH or DNase I loaded microparticles were prepared via spray drying from double emulsion (w(1)/o/w(2)) utilizing chloroform (CHF) as the organic solvent, l-leucine as a dispersibility enhancer and an internal aqueous phase (w(1)) containing PEG4500 or Pluronic(®) F-68 (PLF68). a-CH released from microparticles was investigated for bioactivity using the azocasein assay and the mucinolytic activity was assessed utilizing the degradation of mucin suspension assay. The chemical structure of PEG-co-(PGA-co-PDL) was characterized by (1)H NMR and FT-IR with both analyses confirming PEG incorporated into the polymer backbone, and any unreacted units removed. Optimum formulation a-CH-CHF/PLF68, 1% produced the highest bioactivity, enzyme encapsulation (20.08±3.91%), loading (22.31±4.34µg/mg), FPF (fine particle fraction) (37.63±0.97%); FPD (fine particle dose) (179.88±9.43µg), MMAD (mass median aerodynamic diameter) (2.95±1.61µm), and the mucinolytic activity was equal to the native non-encapsulated enzyme up to 5h. DNase I-CHF/PLF68, 1% resulted in enzyme encapsulation (17.44±3.11%), loading (19.31±3.27µg/mg) and activity (81.9±2.7%). The results indicate PEG-co-(PGA-co-PDL) can be considered as a potential biodegradable polymer carrier for dry powder inhalation of macromolecules for treatment of local pulmonary diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: The aim of this study was to investigate the influence of process parameters during dry coating on particle and dosage form properties upon varying the surface adsorbed moisture of microcrystalline cellulose (MCC), a model filler/binder for orally disintegrating tablets (ODTs). METHODS: The moisture content of MCC was optimised using the spray water method and analysed using thermogravimetric analysis. Microproperty/macroproperty assessment was investigated using atomic force microscopy, nano-indentation, scanning electron microscopy, tablet hardness and disintegration testing. KEY FINDINGS: The results showed that MCC demonstrated its best flowability at a moisture content of 11.2% w/w when compared to control, comprising of 3.9% w/w moisture. The use of the composite powder coating process (without air) resulted in up to 80% increase in tablet hardness, when compared to the control. The study also demonstrated that surface adsorbed moisture can be displaced upon addition of excipients during dry processing circumventing the need for particle drying before tabletting. CONCLUSIONS: It was concluded that MCC with a moisture content of 11% w/w provides a good balance between powder flowability and favourable ODT characteristics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microencapsulation processes, based upon the concept of solvent evaporation, have been employed within these studies to prepare microparticles from poly--hydroxybutyrate homopolymers and copolymers thereof with 3-hydroxyvalerate [P(HB-HV) polymers]. Variations in the preparative technique have facilitated the manufacture of two structurally distinct forms of microparticle. Thus, monolithic microspheres and reservoir-type microcapsules have been respectively fabricated by single and double emulsion-solvent evaporation processes. The objective of the studies reported in chapter three is to asses how a range of preparative variables affect the yield, shape and surface morphology of P(HB-HV) microcapsules. The following chapter then describes how microcapsule morphology in general, and microcapsule porosity in particular, can be regulated by blending the fabricating P(HB-HV) polymer with poly--caprolactone [PCL]. One revelation of these studies is the ability to generate uniformly microporous microcapsules from blends of various high molecular weight P(HB-HV) polymers with a low molecular weight form of PCL. These microcapsules are of particular interest because they may have the potential to facilitate the release of an encapsulated macromolecule via an aqueous diffusion mechanism which is not reliant on polymer degradation. In order to investigate this possibility, one such formulation is used in chapter five to encapsulate a wide range of different macromolecules, whose in vitro release behaviour is subsequently evaluated. The studies reported in chapter six centre on the preparation and characterization of hydrocortisone-loaded microspheres, prepared from a range of P(HB-HV) polymers, using a single emulsion-solvent evaporation process. In this chapter, the influence of the organic phase viscosity on the efficiency of drug encapsulation is the focus of initial investigations. Thereafter, it is shown how the strategies previously adopted for the regulation of microcapsule morphology can also be applied to single emulsion systems, with profound implications for the rate of drug release.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this research was to formulate a novel biodegradable, biocompatible cationic microparticle vector for the delivery of DNA vaccines. The work builds upon previous research by Singh et al which described the adsorption of DNA to the surface of poly (D,L-lactide-co-glycolide) (PLG) microparticles stabilised with the surfactant cetyltrimethyl ammonium bromide (CT AB). This work demonstrated the induction of antibody and cellular immune responses to HIV proteins encoded on plasmid DNA adsorbed to the particle surface in mice, guinea pigs and non-human primates (Singh et aI, 2000; O'Hagan et aI, 2001). However, the use of surfactants in microparticle formulations for human vaccination is undesirable due to long term safety issues. Therefore, the present research aim was to develop an adsorbed DNA vaccine with enhanced potency and increased safety compared to CTAB stabilised PLG microparticles (PLG/CTAB) by replacement of the surfactant CTAB with an alternative cationic agent. The cationic polymers chitosan and poly (N- vinylpyrrolidone/2-dimethylaminoethyl methacrylate), dimethyl sulfate quaternary (PVP-PDAEMA) were investigated as alternative stabilisers to CTAB. From a variety of initial formulations, the most promising vector(s) for DNA vaccination were selected based on physicochemical data (chapter 3) and in vitro DNA loading and release characteristics (chapter 4). The chosen formulation(s) were analysed in greater depth (chapters 3 and 4), and gene expression was assessed by in vitro cell transfection studies using 293T kidney epithelial and C2C12 myoblast non-phagocytic cell lines (chapter 5). The cytotoxicity of the microparticles and their constituents were also evaluated in vitro (chapter 5). Stability and suitability of the formulation(s) for commercial production were assessed by cryopreparation and lyophilisation studies (chapters 3 and 4). Gene expression levels in cells of the immune response were evaluated by microparticle transfection of the dendritic cell (DC) line 2.4 and primary bone marrow derived DCs (chapter 6). In vivo, mice were injected i.m. with the formulations deemed most promising on the basis of in vitro studies and humoral and cellular immune responses were evaluated (chapter 6).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work peptide antigens [ESAT-6,p45 in water (1ml, 1mg/ml)] have been adsorbed onto 10mg inorganic substrates (hydroxyapatite (MHA P201;P120, CHA), polystyrene, calcium carbonate and glass microspheres) and in vitro release characteristics were determined. The aim of formulation was to enhance the interaction of peptides with antigen presenting cells and to achieve rapid peptide release from the carrier compartment system in a mildly acidic environment. Hydroxyapatite microparticle P201 has a greater surface area and thus has the largest peptide adsorption compared to the P120. CHA gave a further higher adsorption due to larger surface area than that available on microparticles. These particles were incorporated into the BOVIGAMTM assay to determine if they improve the sensitivity. After overnight incubation the blood plasma was removed and the amount of IFN-g in each plasma sample was estimated. CHA and MHA P201 gave a significantly higher immune response at low peptide concentration compared to the free peptide, thus indicating that these systems can be used to evaluate Tuberculosis (TB) amongst cattle using the BOVIGAMTM assay. Badgers are a source of TB and pass infection to cattle. At the moment vaccination against TB in badgers is via the parenteral route and requires a trained veterinary surgeon as well as catching the badgers. This process is expensive and time consuming; consequently an oral delivery system for delivery of BCG vaccines is easier and cheaper. The initial stage involved addition of various surfactants and suspending agents to disperse BCG and the second stage involved testing for BCG viability. Various copolymers of Eudragit were used as enteric coating systems to protect BCG against the acidic environment of the stomach (SGF, 0.1M HCl pH 1.2 at 37oC) while dissolving completely in the alkaline environment of the small intestine (SIF, IM PBS solution pH 7.4 at 37oC). Eudragit L100 dispersed in 2ml PBS solution and 0.9ml Tween 80 (0.1%w/v) gave the best results remaining intact in SGF loosing only approximately 10-15% of the initial weight and dissolving completely within 3 hours. BCG was incorporated within the matrix formulation adjusted to pH 7 at the initial formulation stage containing PBS solution and Tween 80. It gave viability of x106 cfu/ml at initial formulation stage, freezing and freeze-drying stages. After this stage the matrix was compressed at 4 tons for 3 mins and placed in SGF for 2 hours and then in SIF until dissolved. The BCG viability dropped to x106 cfu/ml. There is potential to develop it further for oral delivery of BCG vaccine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The resonant slow light structures created along a thin-walled optical capillary by nanoscale deformation of its surface can perform comprehensive simultaneous detection and manipulation of microfluidic components. This concept is illustrated with a model of a 0.5 mm long, 5 nm high, triangular bottle resonator created at a 50 μm radius silica capillary containing floating microparticles. The developed theory shows that the microparticle positions can be determined from the bottle resonator spectrum. In addition, the microparticles can be driven and simultaneously positioned at predetermined locations by the localized electromagnetic field created by the optimized superposition of eigenstates of this resonator, thus exhibiting a multicomponent, near-field optical tweezer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: The aim of this work was to optimize biodegradable polyester poly(glycerol adipate-co-ω-pentadecalactone), PGA-co-PDL, microparticles as sustained release (SR) carriers for pulmonary drug delivery. Methods: Microparticles were produced by spray drying directly from double emulsion with and without dispersibility enhancers (L-arginine and L-leucine) (0.5-1.5%w/w) using sodium fluorescein (SF) as a model hydrophilic drug. Results: Spray-dried microparticles without dispersibility enhancers exhibited aggregated powders leading to low fine particle fraction (%FPF) (28.79±3.24), fine particle dose (FPD) (14.42±1.57 μg), with a mass median aerodynamic diameter (MMAD) 2.86±0.24 μm. However, L-leucine was significantly superior in enhancing the aerosolization performance ( L-arginine:%FPF 27.61±4.49-26.57±1.85; FPD 12.40±0.99-19.54±0.16 μg and MMAD 2.18±0.35-2. 98±0.25 μm, L-leucine:%FPF 36.90±3.6-43.38±5. 6; FPD 18.66±2.90-21.58±2.46 μg and MMAD 2.55±0.03-3. 68±0.12 μm). Incorporating L-leucine (1.5%w/w) reduced the burst release (24.04±3.87%) of SF compared to unmodified formulations (41.87±2.46%), with both undergoing a square root of time (Higuchi's pattern) dependent release. Comparing the toxicity profiles of PGA-co-PDL with L-leucine (1.5%w/w) (5 mg/ml) and poly(lactide-co-glycolide), (5 mg/ml) spray-dried microparticles in human bronchial epithelial 16HBE14o-cell lines, resulted in cell viability of 85.57±5.44 and 60.66±6.75%, respectively, after 72 h treatment. Conclusion:The above data suggest that PGA-co-PDL may be a useful polymer for preparing SR microparticle carriers, together with dispersibility enhancers, for pulmonary delivery. © Springer Science+Business Media, LLC 2011.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Type 2 diabetes mellitus (T2DM) increases in prevalence in the elderly. There is evidence for significant muscle loss and accelerated cognitive impairment in older adults with T2DM; these comorbidities are critical features of frailty. In the early stages of T2DM, insulin sensitivity can be improved by a “healthy” diet. Management of insulin resistance by diet in people over 65 years of age should be carefully re-evaluated because of the risk for falling due to hypoglycaemia. To date, an optimal dietary programme for older adults with insulin resistance and T2DM has not been described. The use of biomarkers to identify those at risk for T2DM will enable clinicians to offer early dietary advice that will delay onset of disease and of frailty. Here we have used an in silico literature search for putative novel biomarkers of T2DM risk and frailty. We suggest that plasma bilirubin, plasma, urinary DPP4-positive microparticles and plasma pigment epithelium-derived factor merit further investigation as predictive biomarkers for T2DM and frailty risk in older adults. Bilirubin is screened routinely in clinical practice. Measurement of specific microparticle frequency in urine is less invasive than a blood sample so is a good choice for biomonitoring. Future studies should investigate whether early dietary changes, such as increased intake of whey protein and micronutrients that improve muscle function and insulin sensitivity, affect biomarkers and can reduce the longer term complication of frailty in people at risk for T2DM.