4 resultados para Mg Corrosion Mechanisms
em Aston University Research Archive
Resumo:
The recent search for new sources of hydrocarbons has led to production from very severe environments which can contain considerable amounts of carbon dioxide, hydrogen sulphide, and chloride ions, combined with temperatures which can exceed 100°C. Oil and gas production from such wells requires highly corrosion-resistant materials. The traditional solution of using carbon steel with additional protection is generally inadequate in these very-aggressive environments. Duplex stainless steels (DSS) are attractive candidates because of their high strength, good general corrosion resistance, excellent resistance to chloride-induced stress corrosion cracking, and good weldability. Although duplex stainless steels have a very good reputation in both subsea and topsides pipework, it is recognized that the tolerance of these materials to variations in microstructure and chemical composition are still not fully understood. The object of this paper is to review the corrosion behaviour of duplex stainless steels in the petrochemical industry, with particular emphasis on microstructures and the effect of changes in chemical composition.
Resumo:
The reduction in the useful-service life of reinforced concrete construction in the Arabian Gulf is attributed to reinforcement corrosion. While this phenomenon is primarily related to chloride ions, the concomitant pressure of sulfate salts may accelerate the deterioration process. Another factor which might influence reinforcement corrosion is the elevated ambient temperature. While few studies have been conducted to evaluate the individual effect of sulfate contamination and temperature on chloride binding and reinforcement corrosion, the synergistic effect of these factors on concrete durability, viz.-a-viz., reinforcement corrosion, needs to be evaluated. Further, the environmental conditions of the Arabian Gulf are also conducive for accelerated carbonation. However, no data are available on the concomitant effect of chloride-sulfate contamination and elevated temperature on the carbonation behaviour of plain and blended cements.This study was conducted to evaluate the conjoint effect of chloride-sulfate contamination and temperature on the pore solution chemistry and reinforcement corrosion. The effect of chloride-sulfate contamination and elevated temperature on carbonation in plain and blended cements was also investigated. Pore solution extraction and analysis, X-ray diffraction, differential thermal analysis, scanning electron microscopy, DC linear polarization resistance and AC impedance spectroscopy techniques were utilized to study the effect of experimental parameters on chloride binding, reinforcement corrosion and carbonation.The results indicated that the concomitant presence of chloride and sulfate salts and temperature significantly influences the durability performance of concrete by: (i) decreasing the chloride binding, (ii) increasing reinforcement corrosion, and (iii) accelerating the carbonation process. To avoid such deterioration, it is advisable to minimize both chloride and sulfate contamination contributed by the mixture ingredients. Due to the known harmful role of sulfate ions in decreasing the chloride binding and increasing reinforcement corrosion, limits on allowable sulfate contamination in concrete should also be established.
Resumo:
Ten grades of ABS and four grades of polypropylene have been plated with various copper + nickel + chromium coatings and subjected to a variety of tests. In corrosion studies the pre-electroplating sequence and plastics type have been shown to influence performance. One ABS pre-electroplating sequence was consistently associated with better corrosion performance; two factors were responsible for this, namely the more severe nature of the etch and the relatively more noble electroless nickel. Statistical analysis has indicated that order of severity of the corrosion tests was static-mobile-CASS, the latter being the least severe. In mechanical tests two properties of ABS and polypropJylene, ductility and impact strength, have been shown to be adversely affected when electrodeposited layers were applied. The cause of this is due to a complex of factors, the most important of which is the notch sensitivity of the plastics. Peel adhesion has been studied on flat panels and also on ones which had a ridge and a valley moulded into one face. High adhesion peaks occurred on the flat face at regions associated with the ridge and valley. The local moulding conditions induced by the features were responsible for this phenonemon. In the main programme the thermal cycling test was shown to be more likely than the peel adhesion test to give an indication of the service performance of electroplated plastics.
Resumo:
Silicon carbide ceramics are candidate materials for use in aggressive environments, including those where aqueous acids are present. Standard corrosion testing methods such as immersion testing are not always sufficiently sensitive for these ceramics owing to the very low, almost unobservable, corrosion rates encountered. Using electrochemical methods the corrosion processes can be assisted, leading to higher rates and thus the elucidation of reaction mechanisms. The behaviour of a sintered and a reaction bonded silicon carbide has been investigated in aqueous HCl, HF, HNO3, and H2SO4, using standard immersion and new electrochemical methods. Both materials were passive in HCl, HNO3, and H2SO4 because of the formation of a surface silica film, and were active in HF. In HF, corrosion of sintered silicon carbide was slight and the residual silicon was removed from reaction bonded specimens.