5 resultados para Method of linear transformations

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose two algorithms involving the relaxation of either the given Dirichlet data (boundary displacements) or the prescribed Neumann data (boundary tractions) on the over-specified boundary in the case of the alternating iterative algorithm of Kozlov et al. [16] applied to Cauchy problems in linear elasticity. A convergence proof of these relaxation methods is given, along with a stopping criterion. The numerical results obtained using these procedures, in conjunction with the boundary element method (BEM), show the numerical stability, convergence, consistency and computational efficiency of the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new method for the optimisation of the mirror element spacing arrangement and operating temperature of linear Fresnel reflectors (LFR). The specific objective is to maximise available power output (i.e. exergy) and operational hours whilst minimising cost. The method is described in detail and compared to an existing design method prominent in the literature. Results are given in terms of the exergy per total mirror area (W/m2) and cost per exergy (US $/W). The new method is applied principally to the optimisation of an LFR in Gujarat, India, for which cost data have been gathered. It is recommended to use a spacing arrangement such that the onset of shadowing among mirror elements occurs at a transversal angle of 45°. This results in a cost per exergy of 2.3 $/W. Compared to the existing design approach, the exergy averaged over the year is increased by 9% to 50 W/m2 and an additional 122 h of operation per year are predicted. The ideal operating temperature at the surface of the absorber tubes is found to be 300 °C. It is concluded that the new method is an improvement over existing techniques and a significant tool for any future design work on LFR systems

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Linear Programming (LP) is a powerful decision making tool extensively used in various economic and engineering activities. In the early stages the success of LP was mainly due to the efficiency of the simplex method. After the appearance of Karmarkar's paper, the focus of most research was shifted to the field of interior point methods. The present work is concerned with investigating and efficiently implementing the latest techniques in this field taking sparsity into account. The performance of these implementations on different classes of LP problems is reported here. The preconditional conjugate gradient method is one of the most powerful tools for the solution of the least square problem, present in every iteration of all interior point methods. The effect of using different preconditioners on a range of problems with various condition numbers is presented. Decomposition algorithms has been one of the main fields of research in linear programming over the last few years. After reviewing the latest decomposition techniques, three promising methods were chosen the implemented. Sparsity is again a consideration and suggestions have been included to allow improvements when solving problems with these methods. Finally, experimental results on randomly generated data are reported and compared with an interior point method. The efficient implementation of the decomposition methods considered in this study requires the solution of quadratic subproblems. A review of recent work on algorithms for convex quadratic was performed. The most promising algorithms are discussed and implemented taking sparsity into account. The related performance of these algorithms on randomly generated separable and non-separable problems is also reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methods of dynamic modelling and analysis of structures, for example the finite element method, are well developed. However, it is generally agreed that accurate modelling of complex structures is difficult and for critical applications it is necessary to validate or update the theoretical models using data measured from actual structures. The techniques of identifying the parameters of linear dynamic models using Vibration test data have attracted considerable interest recently. However, no method has received a general acceptance due to a number of difficulties. These difficulties are mainly due to (i) Incomplete number of Vibration modes that can be excited and measured, (ii) Incomplete number of coordinates that can be measured, (iii) Inaccuracy in the experimental data (iv) Inaccuracy in the model structure. This thesis reports on a new approach to update the parameters of a finite element model as well as a lumped parameter model with a diagonal mass matrix. The structure and its theoretical model are equally perturbed by adding mass or stiffness and the incomplete number of eigen-data is measured. The parameters are then identified by an iterative updating of the initial estimates, by sensitivity analysis, using eigenvalues or both eigenvalues and eigenvectors of the structure before and after perturbation. It is shown that with a suitable choice of the perturbing coordinates exact parameters can be identified if the data and the model structure are exact. The theoretical basis of the technique is presented. To cope with measurement errors and possible inaccuracies in the model structure, a well known Bayesian approach is used to minimize the least squares difference between the updated and the initial parameters. The eigen-data of the structure with added mass or stiffness is also determined using the frequency response data of the unmodified structure by a structural modification technique. Thus, mass or stiffness do not have to be added physically. The mass-stiffness addition technique is demonstrated by simulation examples and Laboratory experiments on beams and an H-frame.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuroimaging studies of cortical activation during image transformation tasks have shown that mental rotation may rely on similar brain regions as those underlying visual perceptual mechanisms. The V5 complex, which is specialised for visual motion, is one region that has been implicated. We used functional magnetic resonance imaging (fMRI) to investigate rotational and linear transformation of stimuli. Areas of significant brain activation were identified for each of the primary mental transformation tasks in contrast to its own perceptual reference task which was cognitively matched in all respects except for the variable of interest. Analysis of group data for perception of rotational and linear motion showed activation in areas corresponding to V5 as defined in earlier studies. Both rotational and linear mental transformations activated Brodman Area (BA) 19 but did not activate V5. An area within the inferior temporal gyrus, representing an inferior satellite area of V5, was activated by both the rotational perception and rotational transformation tasks, but showed no activation in response to linear motion perception or transformation. The findings demonstrate the extent to which neural substrates for image transformation and perception overlap and are distinct as well as revealing functional specialisation within perception and transformation processing systems.