3 resultados para Metastable ferroelectric polarization
em Aston University Research Archive
Resumo:
Grain size effects on the physical properties of polycrystalline ferroelectrics have been extensively studied for decades; however there are still major controversies regarding the dependence of the piezoelectric and ferroelectric properties on the grain size. Dense BaTiO3 ceramics with different grain sizes were fabricated by either conventional sintering or spark plasma sintering using micro- and nano-sized powders. The results show that the grain size effect on the dielectric permittivity is nearly independent of the sintering method and starting powder used. A peak in the permittivity is observed in all the ceramics with a grain size near 1μm and can be attributed to a maximum domain wall density and mobility. The piezoelectric coefficient d33 and remnant polarization Pr show diverse grain size effects depending on the particle size of the starting powder and sintering temperature. This suggests that besides domain wall density, other factors such as back fields and point defects, which influence the domain wall mobility, could be responsible for the different grain size dependence observed in the dielectric and piezoelectric/ferroelectric properties. In cases where point defects are not the dominant contributor, the piezoelectric constant d33 and the remnant polarization Pr increase with increasing grain size.
Resumo:
The influence of low vacuum on quasistatic current-voltage (I–V) dependences and the impact of wet air pulse on dynamic bipolar I-V-loops and unipolar I-V-curves of fungal melanin thin layers have been studied for the first time. The threshold hysteresis voltages of I–V dependences are near to the standard electrode potentials of anodic water decomposition. Short wet air pulse impact leads to sharp increase of the current and appearance of “hump”-like and “knee”-like features of I-V-loops and I-V-curves, respectively. By treatment of I-V-loop allowing for I-V-curve shape the maxima of displacement current are revealed. The peculiarities of I-V-characteristics were modelled by series-parallel RC-circuit with Zener diodes as nonlinear elements. As a reason of appearance of temporal polar media with reversible ferroelectric-like polarization and ionic space charge transfer is considered the water-assisted dissociation of some ionic groups of melanin monomers that significantly influences electrophysical parameters of melanin nanostructures.
Resumo:
Fluctuation-induced escape (FIE) from a metastable state with probability controlled by external force is a process inherent in many physical phenomena such as diffusion in crystals, protein folding, activated chemical reactions etc. [1-3]. In this work we present a novel example of FIE problem, considering a very practical nonlinear system recently emerged in the area of fibre telecommunications. Unlike the standard FIE problems where noise is time-dependent, in fibre Raman amplifier (FRA) the role of noise is played by frozen fluctuations of parameters (random birefringence) along the fibre span which result from the breaking of cylindrical symmetry during the fibre drawing [4-6]. The role of periodic forcing in this problem is played by the periodic fibre spinning, leading to key model that is formally similar to the time-domain equations for periodically forced escape [1-3]. © 2011 IEEE.