3 resultados para Metal-working machinery

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The role of technology management in achieving improved manufacturing performance has been receiving increased attention as enterprises are becoming more exposed to competition from around the world. In the modern market for manufactured goods the demand is now for more product variety, better quality, shorter delivery and greater flexibility, while the financial and environmental cost of resources has become an urgent concern to manufacturing managers. This issue of the International Journal of Technology Management addresses the question of how the diffusion, implementation and management of technology can improve the performance of manufacturing industries. The authors come from a large number of different countries and their contributions cover a wide range of topics within this general theme. Some papers are conceptual, others report on research carried out in a range of different industries including steel production, iron founding, electronics, robotics, machinery, precision engineering, metal working and motor manufacture. In some cases they describe situations in specific countries. Several are based on presentations made at the UK Operations Management Association's Sixth International Conference held at Aston University at which the conference theme was 'Achieving Competitive Edge: Getting Ahead Through Technology and People'. The first two papers deal with questions of advanced manufacturing technology implementation and management. Firstly Beatty describes a three year longitudinal field study carried out in ten Canadian manufacturing companies using CADICAM and CIM systems. Her findings relate to speed of implementation, choice of system type, the role of individuals in implementation, organization and job design. This is followed by a paper by Bessant in which he argues that a more a strategic approach should be taken towards the management of technology in the 1990s and beyond. Also considered in this paper are the capabilities necessary in order to deploy advanced manufacturing technology as a strategic resource and the way such capabilities might be developed within the firm. These two papers, which deal largely with the implementation of hardware, are supplemented by Samson and Sohal's contribution in which they argue that a much wider perspective should be adopted based on a new approach to manufacturing strategy formulation. Technology transfer is the topic of the following two papers. Pohlen again takes the case of advanced manufacturing technology and reports on his research which considers the factors contributing to successful realisation of AMT transfer. The paper by Lee then provides a more detailed account of technology transfer in the foundry industry. Using a case study based on a firm which has implemented a number of transferred innovations a model is illustrated in which the 'performance gap' can be identified and closed. The diffusion of technology is addressed in the next two papers. In the first of these, by Lowe and Sim, the managerial technologies of 'Just in Time' and 'Manufacturing Resource Planning' (or MRP 11) are examined. A study is described from which a number of factors are found to influence the adoption process including, rate of diffusion and size. Dahlin then considers the case of a specific item of hardware technology, the industrial robot. Her paper reviews the history of robot diffusion since the early 1960s and then tries to predict how the industry will develop in the future. The following two papers deal with the future of manufacturing in a more general sense. The future implementation of advanced manufacturing technology is the subject explored by de Haan and Peters who describe the results of their Dutch Delphi forecasting study conducted among a panel of experts including scientists, consultants, users and suppliers of AMT. Busby and Fan then consider a type of organisational model, 'the extended manufacturing enterprise', which would represent a distinct alternative pure market-led and command structures by exploiting the shared knowledge of suppliers and customers. The three country-based papers consider some strategic issues relating manufacturing technology. In a paper based on investigations conducted in China He, Liff and Steward report their findings from strategy analyses carried out in the steel and watch industries with a view to assessing technology needs and organizational change requirements. This is followed by Tang and Nam's paper which examines the case of machinery industry in Korea and its emerging importance as a key sector in the Korean economy. In his paper which focuses on Venezuela, Ernst then considers the particular problem of how this country can address the problem of falling oil revenues. He sees manufacturing as being an important contributor to Venezuela's future economy and proposes a means whereby government and private enterprise can co-operate in development of the manufacturing sector. The last six papers all deal with specific topics relating to the management manufacturing. Firstly Youssef looks at the question of manufacturing flexibility, introducing and testing a conceptual model that relates computer based technologies flexibility. Dangerfield's paper which follows is based on research conducted in the steel industry. He considers the question of scale and proposes a modelling approach determining the plant configuration necessary to meet market demand. Engstrom presents the results of a detailed investigation into the need for reorganising material flow where group assembly of products has been adopted. Sherwood, Guerrier and Dale then report the findings of a study into the effectiveness of Quality Circle implementation. Stillwagon and Burns, consider how manufacturing competitiveness can be improved individual firms by describing how the application of 'human performance engineering' can be used to motivate individual performance as well as to integrate organizational goals. Finally Sohal, Lewis and Samson describe, using a case study example, how just-in-time control can be applied within the context of computer numerically controlled flexible machining lines. The papers in this issue of the International Journal of Technology Management cover a wide range of topics relating to the general question of improving manufacturing performance through the dissemination, implementation and management of technology. Although they differ markedly in content and approach, they have the collective aim addressing the concepts, principles and practices which provide a better understanding the technology of manufacturing and assist in achieving and maintaining a competitive edge.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditional machinery for manufacturing processes are characterised by actuators powered and co-ordinated by mechanical linkages driven from a central drive. Increasingly, these linkages are replaced by independent electrical drives, each performs a different task and follows a different motion profile, co-ordinated by computers. A design methodology for the servo control of high speed multi-axis machinery is proposed, based on the concept of a highly adaptable generic machine model. In addition to the dynamics of the drives and the loads, the model includes the inherent interactions between the motion axes and thus provides a Multi-Input Multi-Output (MIMO) description. In general, inherent interactions such as structural couplings between groups of motion axes are undesirable and needed to be compensated. On the other hand, imposed interactions such as the synchronisation of different groups of axes are often required. It is recognised that a suitable MIMO controller can simultaneously achieve these objectives and reconciles their potential conflicts. Both analytical and numerical methods for the design of MIMO controllers are investigated. At present, it is not possible to implement high order MIMO controllers for practical reasons. Based on simulations of the generic machine model under full MIMO control, however, it is possible to determine a suitable topology for a blockwise decentralised control scheme. The Block Relative Gain array (BRG) is used to compare the relative strength of closed loop interactions between sub-systems. A number of approaches to the design of the smaller decentralised MIMO controllers for these sub-systems has been investigated. For the purpose of illustration, a benchmark problem based on a 3 axes test rig has been carried through the design cycle to demonstrate the working of the design methodology.