18 resultados para Metal-ceramic joint. Mechanical metallization. Brazing. Zirconia and stainless steel

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A clinical study was undertaken to compare the surface microbial contamination associated with pens constructed of either a copper alloy or stainless steel used by nurses on intensive care units. A significantly lower level of microbial contamination was found on the copper alloy pens. Copyright © 2011 by the Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Study Design. The influence of mechanical load on pleiotrophin (PTM) and aggrecan expression by intervertebral disc (IVD) cells, and the effects of disc cell conditioned medium on endothelial cell migration was investigated. Objective. To examine possible interactions of mechanical loads and known pro- and antiangiogenic factors, which may regulate disc angiogenesis during degeneration. Summary of Background Data. Pleiotrophin expression can be influenced by mechanical stimulation and has been associated with disc vascularization. Disc aggrecan inhibits endothelial cell migration, suggesting an antiangiogenic role. A possible interplay between these factors is unknown. Methods. The influence of the respective predominant load (cyclic strain for anulus fibrosus and hydrostatic pressure for nucleus pulposus cells) on PTN and aggrecan expression by IVD cells was determined by real-time RT-PCR and Western blotting (PTN only). The effects of IVD cell conditioned medium on endothelial cell migration were analyzed in a bioassay using human microvascular endothelial (HMEC-1) cells. Results. Application of both mechanical loads resulted in significant alterations of gene expression of PTN (+67%, P = 0.004 in anulus cells; +29%, P = 0.03 in nucleus cells) and aggrecan (+42%, P = 0.03 in anulus cells, -25%, P = 0.03 in nucleus cells). These effects depended on the cell type, the applied load, and timescale. Conditioned media of nucleus pulposus cells enhanced HMEC-1 migration, but this effect was diminished after 2.5 MPa hydrostatic pressure, when aggrecan expression was diminished, but not 0.25 MPa, when expression levels were unchanged. Conclusion. Mechanical loading influences PTN expression by human IVD cells. Conditioned media from nucleus pulposus cell cultures stimulated HMEC-1 endothelial cell migration. This study demonstrates that the influence of mechanical loads on vascularization of the human IVD is likely to be complex and does not correlate simply with altered expression of known pro- and antiangiogenic factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper deals with experimentation of ZrO2 and Al2O3-supported catalysts for conversion of naphthalene, chosen as tar model compound of pyrolysis or gasification syngas. In particular, the reforming capacity of active metals and promoters such as Co, Ni, Fe, Cr, Ce and Pt was tested in a fixed bed reactor at temperature from 400 to 900 °C. As regards ZrO2-supported catalysts, the best results were achieved by the Ni/Fe/Pt catalyst with 96% naphthalene conversion, 78% and 280% as CO and H2 production yield at 800 °C. Regarding Al2O3-supported catalysts, they were more active on average than the zirconia ones, achieving a very good performance even at 500 °C (90–100% naphthalene conversion, 30–40% CO yield and 300–350% H2 yield at 550 °C). Influence of different amounts of alumina, montmorillonite and carbon on carrier composition as well as pellets’ size were also studied. Both zirconia and alumina catalysts showed deactivation at higher temperatures due to coke deposition, resulting in a strong H2 production drop. Regeneration of catalysts by O2 and steam as well as activation by H2 were also studied. The activated catalyst was able to convert more than 99% naphthalene at 450 °C with a CO and H2 production yield of 26% and 420%, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A thermodynamic analysis which is capable of estimating the austenite/ferrite equilibria in duplex stainless steels has been carried out using the sublattice thermodynamic model. The partitioning of alloying elements between the austenite and ferrite phases has been calculated as a function of temperature. The results showed that chromium partitioning was not influenced significantly by the temperature. The molybdenum, on the other hand, was found to partition preferentially into ferrite phase as the temperature decreases. A strong partitioning of nickel into the austenite was observed to decrease gradually with increasing temperature. Among the alloying elements, average nitrogen concentration was found to have the most profound effect on the phase balance and the partitioning of nitrogen into the austenite. The partitioning coefficient of nitrogen (the ratio of the mole fraction of nitrogen in the austenite to that in the ferrite) was found to be as high as 7.0 around 1300 K. Consequently, the volume fraction of austenite was influenced by relatively small additions of nitrogen. The results are compared with the experimentally observed data in a duplex stainless steel weld metal in conjunction with the solid state δ → δ + γ phase transformation. Particular attention was given to the morphological instability of grain boundary austenite allotriomorphs. A compariso between the experimental results and calculations indicated that the instability associated with irregular austenite perturbations results from the high degree of undercooling. The results suggest that the model can be used successfully to understand the development of the microstructure in duplex stainless steel weld metals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface finish is one of the most relevant aspects of machining operations, since it is one of the principle methods to assess quality. Also, surface finish influences mechanical properties such as fatigue behavior, wear, corrosion, etc. The feed, the cutting speed, the cutting tool material, the workpiece material and the cutting tool wear are some of the most important factors that affects the surface roughness of the machined surface. Due to the importance of the martensitic 416 stainless steel in the petroleum industry, especially in valve parts and pump shafts, this material was selected to study the influence of the feed per tooth and cutting speed on tool wear and surface integrity. Also the influence of tool wear on surface roughness is analyzed. Results showed that high values of roughness are obtained when using low cutting speed and feed per tooth and by using these conditions tool wear decreases prolonging tool life. Copyright © 2009 by ASME.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthetic hectorite, laponite has been used within the paper industry to produce mildly conducting paper for use in electrographic printing. The aim of this research was to modify laponite in order to improve the electrical conductivity. In a continuation of a previous investigation involving organotin intercalation of laponite, the organotin precursor (p-CH3,OC6H4)4Sn was synthesised and characterised using Mass Spectroscopy, Infrared Spectroscopy and elemental analysis. Results of intercalation with this compound and a range of organobismuth and organoantimony compounds suggested that a halide content within the precursor was necessary for improvement in conductivity to be observed. Organometallic intercalation of a range of organotellurium compounds with laponite provided evidence that a hydrolysis reaction on the clay surface followed by the release of hydrochloric acid was an important first step if a reaction was to occur with the clay. Atomic Absorption Spectroscopy studies have shown that the acid protons underwent exchange with the interlayer sodium ions in the clay to varying degrees. Gas-liquid Chromatography and Infrared Spectroscopy revealed that the carbon-tellurium bond remained intact. Powder X-ray diffraction revealed that there had been no increase in the basal spacing. The a.c. conductivity of the modified clays in the form of pressed discs was studied over a frequency range of 12Hz - 100kHz using two electrode systems, silver paste and stainless steel. The a.c. conductivity consists of two components, ionic and reactive. The conductivity of laponite was increased by intercalation with organometallic compounds. The most impressive increase was gained using the organotellurium precursor (p-CH3OC6H4)2TeCl2. Conductivity investigations using the stainless steel electrode where measurements are made under pressure showed that in the case of laponite, where poor particle-particle contact exists at ambient pressure, there is a two order of magnitude increase in the measured a.c. conductivity. This significant increase was not seen in modified laponites where the particle-particle contact had already been improved upon. Investigations of the clay surface using Scanning Electron Microscopy suggested that the improvement in particle-particle contact is the largest factor in the determination of the conductivity. The other important factor is the nature and the concentration of the interlayer cations. A range of clays were synthesised in order to increase the concentration of sodium interlayer cations. A sol-gel method was employed to carry out these syntheses. A conductivity evaluation showed that increasing the concentration of the sodium cations within the clay led to an increase in the conductivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study has been made of the effects of welding and material variables on the occurrence of porosity in tungsten inert gas arc welding of copper. The experiments were based on a statistical design and variables included, welding current, welding speed, arc atmosphere composition, inert gas flow rate, weld preparation, and base material. The extent of weld metal porosity was assessed by density measurement and its morphology by X-ray radiography and metallography. In conjunction with this the copper-steam reaction has been investigated under conditions of controlled atmosphere arc melting. The welding experiments have shown that the extent of steam porosity is increased by increased water vapour content of the arc atmosphere, increased oxygen content of the base material and decreased welding speed. The arc melting experiments have shown that the steam reaction occurs in the body of the weld pool and proceeds to an apparent equi1ibrium state appropriate to to its temperature, the hydrogen and oxygen being supplied by the dissociation of water vapour in the arc atmosphere. It has been shown conclusively that nitrogen porosity can occur in the tungsten inert gas arc welding of copper and that this porosity can be eliminated by using filler wires containing small amounts of aluminum and titanium. Since it has been shown to be much more difficult to produce sound butt welds than melt runs it has been concluded that the porosity associated with joint fit up is due to nitrogen entrained into tho arc atmosphere. Clearly atmospheric entrainment would also, to a much lesser extent, involve water vapour. From a practical welding point of view it has thus been postulated that use of a filler wire containing small amounts of aluminum and/or titanium would eliminate both forms of porosity since these elements are both strongJy deoxidising and denitriding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates distortions and residual stresses induced in butt joint of thin plates using Metal Inert Gas welding. A moving distributed heat source model based on Goldak's double-ellipsoid heat flux distribution is implemented in Finite Element (FE) simulation of the welding process. Thermo-elastic-plastic FE methods are applied to modelling thermal and mechanical behaviour of the welded plate during the welding process. Prediction of temperature variations, fusion zone and heat affected zone as well as longitudinal and transverse shrinkage, angular distortion, and residual stress is obtained. FE analysis results of welding distortions are compared with existing experimental and empirical predictions. The welding speed and plate thickness are shown to have considerable effects on welding distortions and residual stresses. © 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An experimental and theoretical study of the impact behaviour of charged microparticles in a high voltage vacuum gap has been carried out to investigate under controlled conditions the role of low velocity microparticles (ζ 500 ms-1) in initiating electrical breakdown in such gaps. This has involved developing a unique (UHV) low-velocity source of micron-sized charged particles to study the underlying mechanical and electrical aspects of micro-particle impact on a range of target materials e.g. Pb, Ti, C, stainless-steel and mica etc., having atomically clean or oxidised surfaces. Argon-ion etching and electron-beam heating has been used for in-situ surface treatment and ellipsometry for characterising the target surfaces. An associated sphere/plane theoretical model has been developed for detailed analysis of the many complex electrical (in-flight in-field emission, M.I.M. tunnelling and ohmic conduction) and mechanical (impact dynamics, deformation and heating) phenomena that are involved when a microparticle closely approaches and impacts on a plane target. In each instance the influence of parameters such as particle radius, particle/target impact velocity, surface field, surface condition and material has been determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study is concerned with the mechanisms of growth and wear of protective oxide films formed under various tribological conditions. In the study three different tribological systems are examined in each of which oxidational wear is the dominant equilibrium mode. These are an unlubricated steel on steel system sliding at low and elevated temperatures, a boundary lubricated aluminium bronze on steel system and an unlubricated reciprocating sliding 9% Cr steel system operated at elevated temperature, in an atmosphere of carbon dioxide. The results of mechanical measurements of wear and friction are presented for a range of conditions of load, speed and temper.ature for the systems, together with the results of extensive examinations of the surfaces and sub­ surfaces by various physical methods of analysis. The major part of the thesis, however, is devoted to the development and application of surface models and theoretical quantative expressions in order to explain the observed oxidational wear phenomena. In this work, the mechanisms of formation of load bearing ox ide plateaux are described and are found to be dependent on system geometry and environment. The relative importance of ''in contact" and "out of contact" oxidation is identified together with growth rate constants appropriate to the two situations. Hypotheses are presented to explain the mechanisms of removal of plateaux to form wear debris. The latter hypotheses include the effects of cyclic stressing and dislocation accumulation, together with effects associated with the kinetics of growth and physical properties of the various oxides. The proposed surf ace mode1s have led to the develop­ ment of quantitative expressions for contact temperature, unlubricated wear rates, boundary lubricated wear rates and the wear of rna ter ial during the transition from severe to mild wear. In general theoretical predictions from these expressions are in very good agreement with experimental values.